Thymol

From Wikipedia, the free encyclopedia
Thymol
Thymol
Thymol3D.png
Names
Preferred IUPAC name
5-Methyl-2-(propan-2-yl)phenol
Other names
2-Isopropyl-5-methylphenol
Identifiers
  • 89-83-8 YesY
3D model (JSmol)
  • Interactive image
ChEBI
  • CHEBI:27607 YesY
ChEMBL
  • ChEMBL29411 YesY
ChemSpider
  • 21105998 YesY
DrugBank
  • DB02513 YesY
ECHA InfoCard 100.001.768
  • 2499
KEGG
  • D01039 YesY
UNII
  • 3J50XA376E YesY
Properties
C10H14O
Molar mass 150.22 g·mol−1
Density 0.96 g/cm3
Melting point 49 to 51 °C (120 to 124 °F; 322 to 324 K)
Boiling point 232 °C (450 °F; 505 K)
0.9 g/L (20 °C)[1]
Pharmacology
QP53AX22 (WHO)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Thymol (also known as 2-isopropyl-5-methylphenol, IPMP) is a natural monoterpene phenol derivative of cymene, C10H14O, isomeric with carvacrol, found in oil of thyme, and extracted from Thymus vulgaris (common thyme) and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris.

Chemistry

Thymol is only slightly soluble in water at neutral pH, but it is extremely soluble in alcohols and other organic solvents. It is also soluble in strongly alkaline aqueous solutions due to deprotonation of the phenol.

Synonyms include isopropyl-m-cresol, 1-methyl-3-hydroxy-4-isopropylbenzene, 3-methyl-6-isopropylphenol, 5-methyl-2-(1-methylethyl)phenol, 5-methyl-2-isopropyl-1-phenol, 5-methyl-2-isopropylphenol, 6-isopropyl-3-methylphenol, 6-isopropyl-m-cresol, Apiguard, NSC 11215, NSC 47821, NSC 49142, thyme camphor, m-thymol, and p-cymen-3-ol.[2]

Thymol has a refractive index of 1.5208[3] and an experimental dissociation exponent (pKa) of 10.59±0.10.[4] Thymol absorbs maximum UV radiation at 274 nm.[5]

Thymol is chemically related[clarification needed] to the anesthetic propofol.

Chemical synthesis

Regions lacking natural sources of thymol obtain the compound via total synthesis.[6] Thymol is produced from m-cresol and propene in the gas phase:[7]

C7H8O + C3H6 ⇌ C10H14O

History

The bee balms Monarda fistulosa and Monarda didyma, North American wildflowers, are natural sources of thymol. The Blackfoot Native Americans recognized these plants' strong antiseptic action, and used poultices of the plants for skin infections and minor wounds. A tisane made from them was also used to treat mouth and throat infections caused by dental caries and gingivitis.[8]

Thymol was first isolated by the German chemist Caspar Neumann in 1719.[9] In 1853, the French chemist A. Lallemand named thymol and determined its empirical formula.[10] Thymol was first synthesized by the Swedish chemist Oskar Widman in 1882.[11]

Research

Preliminary research demonstrates that thymol can reduce bacterial resistance to antibiotics,[12] and may be a fungicide.[13] Thymol demonstrates post-antibacterial effect against some microorganisms.[14] This antibacterial activity is caused by inhibiting growth and lactate production, and by decreasing cellular glucose uptake.[15]

The antifungal nature of thymol is due to its ability to alter the hyphal morphology and cause hyphal aggregates, resulting in reduced hyphal diameters and lyses of the hyphal wall.[16] Additionally, thymol is lipophilic, enabling it to interact with the cell membrane of fungus cells, altering cell membrane permeability permitting the loss of macromolecules.[13]

Uses

Thymol

Thymol has been used in alcohol solutions and in dusting powders for the treatment of tinea or ringworm infections, and was used in the United States to treat hookworm infections.[17] People of the Middle East continue to use za'atar, a delicacy made with large amounts of thyme, to reduce and eliminate internal parasites.[18] It is also used as a preservative in halothane, an anaesthetic, and as an antiseptic in mouthwash. When used to reduce plaque and gingivitis, thymol has been found to be more effective when used in combination with chlorhexidine than when used purely by itself.[19] Thymol is also the active antiseptic ingredient in some toothpastes, such as Johnson & Johnson's Euthymol. Thymol has been used to successfully control varroa mites and prevent fermentation and the growth of mold in bee colonies, methods developed by beekeeper R. O. B. Manley.[20] Thymol is also used as a rapidly degrading, non-persisting pesticide.[13][21] Thymol can also be used as a medical disinfectant and general purpose disinfectant.[22]

List of plants that contain thymol

Toxicology and environmental impacts

In 2009, the U.S. Environmental Protection Agency (EPA) reviewed the research literature on the toxicology and environmental impact of thymol and concluded that "thymol has minimal potential toxicity and poses minimal risk".[34]

Environmental breakdown and use as a pesticide

Studies have shown that hydrocarbon monoterpenes and thymol in particular degrade rapidly (DT50 16 days in water, 5 days in soil[21]) in the environment and are, thus, low risks because of rapid dissipation and low bound residues,[21] supporting the use of thymol as a pesticide agent that offers a safe alternative to other more persistent chemical pesticides that can be dispersed in runoff and produce subsequent contamination.

Compendial status

See also

Notes and references

  1. ^ "Thymol". PubChem. Retrieved 2016-04-01. 
  2. ^ CAS Registry: Data obtained from SciFinder[full citation needed]
  3. ^ Mndzhoyan, A. L. (1940). "Thymol from Thymus kotschyanus". Sbornik Trudov Armyanskogo Filial. Akad. Nauk. 1940: 25–28. 
  4. ^ CAS Registry: Data obtained from SciFinder[full citation needed]
  5. ^ Norwitz, G.; Nataro, N.; Keliher, P. N. (1986). "Study of the Steam Distillation of Phenolic Compounds Using Ultraviolent Spectrometry". Anal. Chem. 58 (639–640): 641. doi:10.1021/ac00294a034. 
  6. ^ Mukhopadhyay, Asim Kumar (2004). Industrial Chemical Cresols and Downstream Derivatives. New York: CRC Press. pp. 99–100. ISBN 9780203997413. 
  7. ^ Stroh, R.; Sydel, R.; Hahn, W. (1963). Foerst, Wilhelm, ed. Newer Methods of Preparative Organic Chemistry, Volume 2 (1st ed.). New York: Academic Press. p. 344. ISBN 9780323150422. 
  8. ^ Tilford, Gregory L. (1997). Edible and Medicinal Plants of the West. Missoula, MT: Mountain Press Publishing. ISBN 0-87842-359-1. 
  9. ^ Neuman, Carolo (1724). "De Camphora". Philosophical Transactions of the Royal Society of London. 33 (389): 321–332. doi:10.1098/rstl.1724.0061.  On page 324, Neumann mentions that in 1719 (MDCCXIX) he distilled some essential oils from various herbs. On page 326, he mentions that during the course of these experiments, he obtained a crystalline substance from thyme oil, which he called "Camphora Thymi" (camphor of thyme). (Neumann gave the name "camphor" not only to the specific substance that today is called camphor, but to any crystalline substance that precipitated from a volatile, fragrant oil from some plant.)
  10. ^ Lallemand, A. (1853). "Sur la composition de l'huile essentielle de thym" [On the composition of the essential oil of thyme]. Comptes rendus (in French). 37: 498–500. 
  11. ^ Widmann, Oskar (1882). "Ueber eine Synthese von Thymol aus Cuminol" [On a synthesis of thymol from cuminol]. Berichte der Deutschen chemischen Gesellschaft zu Berlin (in German). 15: 166–172. doi:10.1002/cber.18820150139. 
  12. ^ Palaniappan, Kavitha; Holley, Richard A. (2010). "Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria". International Journal of Food Microbiology. 140 (2–3): 164–168. doi:10.1016/j.ijfoodmicro.2010.04.001. PMID 20457472. .
  13. ^ a b c Nieto, G (2017). "Biological Activities of Three Essential Oils of the Lamiaceae Family". Medicines. 4 (3): 63. doi:10.3390/medicines4030063. PMC 5622398Freely accessible. PMID 28930277. 
  14. ^ Zarrini, G; Bahari-Delgosha, Z.; Mollazadeh-Moghaddam, K; Shahverdi, A. R. (2010). "Post-antibacterial effect of thymol". Pharmaceutical biology. 48 (6): 633–636. doi:10.3109/13880200903229098. PMID 20645735. 
  15. ^ Evans, J.; Martin, J. D. (2000). "Effects of thymol on ruminal microorganisms". Curr. Microbiol. 41 (5): 336–340. doi:10.1007/s002840010145. 
  16. ^ Numpaque, M. A.; Oviedo, L. A.; Gil, J. H.; García, C. M.; Durango, D. L. (2011). "Thymol and carvacrol: biotransformation and antifungal activity against the plant pathogenic fungi Colletotrichum acutatum and Botryodiplodia theobromae". Trop. Plant Pathol. 36: 3–13. doi:10.1590/S1982-56762011000100001. 
  17. ^ Ferrell, John Atkinson (1914). The Rural School and Hookworm Disease. US Bureau of Education Bulletin. No. 20, Whole No. 593. Washington, DC: U.S. Government Printing Office. 
  18. ^ Marwat, Sarfaraz Khan; Khan, Muhammad Aslam; Fazal-ur-Rehman; Bhatti, Inayat Ullah (2009). "Aromatic Plant Species Mentioned in the Holy Qur'an and Ahadith and Their Ethnomedicinal Importance". Pakistan Journal of Nutrition. 8 (9): 1472–1479. doi:10.3923/pjn.2009.1472.1479. 
  19. ^ Filoche, S. K.; Soma, K.; Sissons, C. H. (2005). "Antimicrobial effects of essential oils in combination with chlorhexidine digluconate". Oral Microbiol. Immunol. 20 (4): 221–225. doi:10.1111/j.1399-302X.2005.00216.x. PMID 15943766. 
  20. ^ Ward, Mark (2006-03-08). "Almond farmers seek healthy bees". BBC News. BBC. 
  21. ^ a b c Hu, D.; Coats, J. (2008). "Evaluation of the environmental fate of thymol and phenethyl propionate in the laboratory". Pest Manag. Sci. 64 (7): 775–779. doi:10.1002/ps.1555. 
  22. ^ "Thymol" (PDF). US Environmental Protection Agency. September 1993. 
  23. ^ Novy, P.; Davidova, H.; Serrano Rojero, C. S.; Rondevaldova, J.; Pulkrabek, J.; Kokoska, L. (2015). "Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil". Evid Based Complement Alternat Med. 2015: 734101. doi:10.1155/2015/734101. PMC 4427012Freely accessible. PMID 26000025. 
  24. ^ Zamureenko, V. A.; Klyuev, N. A.; Bocharov, B. V.; Kabanov, V. S.; Zakharov, A. M. (1989). "An investigation of the component composition of the essential oil of Monarda fistulosa". Chemistry of Natural Compounds. 25 (5): 549–551. doi:10.1007/BF00598073. ISSN 1573-8388. 
  25. ^ a b Bouchra, Chebli; Achouri, Mohamed; Idrissi Hassani, L. M.; Hmamouchi, Mohamed (2003). "Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr". Journal of Ethnopharmacology. 89 (1): 165–169. doi:10.1016/S0378-8741(03)00275-7. PMID 14522450. 
  26. ^ Liolios, C. C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. (2009). "Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity". Food Chemistry. Elsevier. 112 (1): 77–83. doi:10.1016/j.foodchem.2008.05.060. 
  27. ^ Ozkan, Gulcan; Baydar, H.; Erbas, S. (2009). "The influence of harvest time on essential oil composition, phenolic constituents and antioxidant properties of Turkish oregano (Origanum onites L.)". Journal of the Science of Food and Agriculture. 90 (2): 205–209. doi:10.1002/jsfa.3788. PMID 20355032. 
  28. ^ Lagouri, Vasiliki; Blekas, George; Tsimidou, Maria; Kokkini, Stella; Boskou, Dimitrios (1993). "Composition and antioxidant activity of essential oils from Oregano plants grown wild in Greece". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A. 197 (1): 1431–4630. doi:10.1007/BF01202694. 
  29. ^ Kanias, G. D.; Souleles, C.; Loukis, A.; Philotheou-Panou, E. (1998). "Trace elements and essential oil composition in chemotypes of the aromatic plant Origanum vulgare". Journal of Radioanalytical and Nuclear Chemistry. 227 (1–2): 23–31. doi:10.1007/BF02386426. 
  30. ^ Figiel, Adam; Szumny, Antoni; Gutiérrez Ortíz, Antonio; Carbonell Barrachina, Ángel A. (2010). "Composition of oregano essential oil (Origanum vulgare) as affected by drying method". Journal of Food Engineering. 98 (2): 240–247. doi:10.1016/j.jfoodeng.2010.01.002. 
  31. ^ a b Goodner, K.L.; Mahattanatawee, K.; Plotto, A.; Sotomayor, J.; Jordán, M. (2006). "Aromatic profiles of Thymus hyemalis and Spanish T. vulgaris essential oils by GC–MS/GC–O". Industrial Crops and Products. 24 (3): 264–268. doi:10.1016/j.indcrop.2006.06.006. 
  32. ^ Lee, Seung-Joo; Umano, Katumi; Shibamoto, Takayuki; Lee, Kwang-Geun (2005). "Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties". Food Chemistry. 91 (1): 131–137. doi:10.1016/j.foodchem.2004.05.056. 
  33. ^ Moldão Martins, M.; Palavra, A.; Beirão da Costa, M. L.; Bernardo Gil, M. G. (2000). "Supercritical CO2 extraction of Thymus zygis L. subsp. sylvestris aroma". The Journal of Supercritical Fluids. 18 (1): 25–34. doi:10.1016/S0896-8446(00)00047-4. 
  34. ^ 74 FR 12613
  35. ^ The British Pharmacopoeia Secretariat (2009). "Index, BP 2009" (PDF). Retrieved 2009-07-05. 
  36. ^ "Japanese Pharmacopoeia" (PDF). Retrieved 2010-04-21. 

External links

Media related to Thymol at Wikimedia Commons

Retrieved from "https://en.wikipedia.org/w/index.php?title=Thymol&oldid=835411497"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Thymol
This page is based on the copyrighted Wikipedia article "Thymol"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA