Talk:Double Mersenne number

From Wikipedia, the free encyclopedia
WikiProject Mathematics (Rated Start-class, Low-priority)
WikiProject Mathematics
This article is within the scope of WikiProject Mathematics, a collaborative effort to improve the coverage of Mathematics on Wikipedia. If you would like to participate, please visit the project page, where you can join the discussion and see a list of open tasks.
Mathematics rating:
Start Class
Low Priority
 Field:  Number theory


At approximately what time will all Mersenne exponents below 80,000,000 checked for whether they are prime?? (This is just about how far http://mersenne.org/status.htm goes.) 66.245.19.60 22:02, 10 May 2004 (UTC)

This reference might help: http://www.utm.edu/research/primes/notes/faq/NextMersenne.html. Giftlite 23:56, 10 May 2004 (UTC)

Just a Conjecture but...

I believe that , or 2170141183460469231731687303715884105727 - 1, is prime. At approximately 5.12176 × 1037 digits, it may be centuries before I am proven correct or incorrect. Also, I believe that this is the fifth, final, and largest Double Mersenne prime. In other words, I believe that is composite for all n > 7, expect for n = 127. PhiEaglesfan712 20:32, 12 July 2007 (UTC)

How about n = ???

Changed definition

PhiEaglesfan712 has just changed the definition of double Mersenne number [1] and Mersenne number [2]. I think both should be changed back. I suggest to keep comments together at Talk:Mersenne prime#Mersenne number. PrimeHunter 23:52, 14 August 2007 (UTC)

Catalan-Mersenne numbers

I have a source in Slovene that Catalan-Mersenne numbers are also called "Cantor('s) numbers" (and I've made an article with this name - Cantorjevo število, since I've found this name in source), perhaps mainly because Georg Cantor allegedly conjectured that these kind of numbers are all primes. Does anybody perhaps have similar English source for this? --xJaM (talk) 00:55, 19 January 2011 (UTC)

Double Wagstaff Numbers

Let =, =, we know that when n = 2, 3, 5, 7, then is a prime, but when n = 13, 17, 19, 31, it's not, and we know that when n = 2, 3, 5, 7, then is a prime, but when n = 11, 13, 17, 19, 23, 31, it's not. I believe that when n>7 (Except of n=43 and n=127), both and are not primes, but is a prime, and and are the largest double Mersenne prime and double Wagstaff prime.(Because 43 is and 127 is )

Retrieved from "https://en.wikipedia.org/w/index.php?title=Talk:Double_Mersenne_number&oldid=607284284"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Talk:Double_Mersenne_number
This page is based on the copyrighted Wikipedia article "Talk:Double Mersenne number"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA