Speed
This article needs additional citations for verification. (July 2016) (Learn how and when to remove this template message)

Speed  

Speed can be thought of as the rate at which an object covers distance. A fastmoving object has a high speed and covers a relatively large distance in a given amount of time, while a slowmoving object covers a relatively small amount of distance in the same amount of time.
 
Common symbols 
v 
SI unit  m/s, m s^{−1} 
Part of a series of articles about 
Classical mechanics 

Core topics

In everyday use and in kinematics, the speed of an object is the magnitude of its velocity (the rate of change of its position); it is thus a scalar quantity.^{[1]} The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval;^{[2]} the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero.
Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second, but the most common unit of speed in everyday usage is the kilometre per hour or, in the US and the UK, miles per hour. For air and marine travel the knot is commonly used.
The fastest possible speed at which energy or information can travel, according to special relativity, is the speed of light in a vacuum c = 792458 metres per second (approximately 299079000000 km/h or 1000000 mph). 671Matter cannot quite reach the speed of light, as this would require an infinite amount of energy. In relativity physics, the concept of rapidity replaces the classical idea of speed.
Contents
Definition
Historical definition
Italian physicist Galileo Galilei is usually credited with being the first to measure speed by considering the distance covered and the time it takes. Galileo defined speed as the distance covered per unit of time.^{[3]} In equation form, that is
where is speed, is distance, and is time. A cyclist who covers 30 metres in a time of 2 seconds, for example, has a speed of 15 metres per second. Objects in motion often have variations in speed (a car might travel along a street at 50 km/h, slow to 0 km/h, and then reach 30 km/h).
Instantaneous speed
Speed at some instant, or assumed constant during a very short period of time, is called instantaneous speed. By looking at a speedometer, one can read the instantaneous speed of a car at any instant.^{[3]} A car travelling at 50 km/h generally goes for less than one hour at a constant speed, but if it did go at that speed for a full hour, it would travel 50 km. If the vehicle continued at that speed for half an hour, it would cover half that distance (25 km). If it continued for only one minute, it would cover about 833 m.
In mathematical terms, the instantaneous speed is defined as the magnitude of the instantaneous velocity , that is, the derivative of the position with respect to time:^{[2]}^{[4]}
If is the length of the path (also known as the distance) travelled until time , the speed equals the time derivative of :^{[2]}
In the special case where the velocity is constant (that is, constant speed in a straight line), this can be simplified to . The average speed over a finite time interval is the total distance travelled divided by the time duration.
Average speed
Different from instantaneous speed, average speed is defined as the total distance covered divided by the time interval. For example, if a distance of 80 kilometres is driven in 1 hour, the average speed is 80 kilometres per hour. Likewise, if 320 kilometres are travelled in 4 hours, the average speed is also 80 kilometres per hour. When a distance in kilometres (km) is divided by a time in hours (h), the result is in kilometres per hour (km/h). Average speed does not describe the speed variations that may have taken place during shorter time intervals (as it is the entire distance covered divided by the total time of travel), and so average speed is often quite different from a value of instantaneous speed.^{[3]} If the average speed and the time of travel are known, the distance travelled can be calculated by rearranging the definition to
Using this equation for an average speed of 80 kilometres per hour on a 4hour trip, the distance covered is found to be 320 kilometres.
Expressed in graphical language, the slope of a tangent line at any point of a distancetime graph is the instantaneous speed at this point, while the slope of a chord line of the same graph is the average speed during the time interval covered by the chord.Average speed of an object is Vav = s÷t
Tangential speed
Linear speed is the distance travelled per unit of time, while tangential speed (or tangential velocity) is the linear speed of something moving along a circular path.^{[5]} A point on the outside edge of a merrygoround or turntable travels a greater distance in one complete rotation than a point nearer the center. Travelling a greater distance in the same time means a greater speed, and so linear speed is greater on the outer edge of a rotating object than it is closer to the axis. This speed along a circular path is known as tangential speed because the direction of motion is tangent to the circumference of the circle. For circular motion, the terms linear speed and tangential speed are used interchangeably, and both use units of m/s, km/h, and others.
Rotational speed (or angular speed) involves the number of revolutions per unit of time. All parts of a rigid merrygoround or turntable turn about the axis of rotation in the same amount of time. Thus, all parts share the same rate of rotation, or the same number of rotations or revolutions per unit of time. It is common to express rotational rates in revolutions per minute (RPM) or in terms of the number of "radians" turned in a unit of time. There are little more than 6 radians in a full rotation (2π radians exactly). When a direction is assigned to rotational speed, it is known as rotational velocity or angular velocity. Rotational velocity is a vector whose magnitude is the rotational speed.
Tangential speed and rotational speed are related: the greater the RPMs, the larger the speed in metres per second. Tangential speed is directly proportional to rotational speed at any fixed distance from the axis of rotation.^{[5]} However, tangential speed, unlike rotational speed, depends on radial distance (the distance from the axis). For a platform rotating with a fixed rotational speed, the tangential speed in the centre is zero. Towards the edge of the platform the tangential speed increases proportional to the distance from the axis.^{[6]} In equation form:
where v is tangential speed and ω (Greek letter omega) is rotational speed. One moves faster if the rate of rotation increases (a larger value for ω), and one also moves faster if movement farther from the axis occurs (a larger value for r). Move twice as far from the rotational axis at the centre and you move twice as fast. Move out three times as far and you have three times as much tangential speed. In any kind of rotating system, tangential speed depends on how far you are from the axis of rotation.
When proper units are used for tangential speed v, rotational speed ω, and radial distance r, the direct proportion of v to both r and ω becomes the exact equation
Thus, tangential speed will be directly proportional to r when all parts of a system simultaneously have the same ω, as for a wheel, disk, or rigid wand.
Units
Units of speed include:
 metres per second (symbol m s^{−1} or m/s), the SI derived unit;
 kilometres per hour (symbol km/h);
 miles per hour (symbol mi/h or mph);
 knots (nautical miles per hour, symbol kn or kt);
 feet per second (symbol fps or ft/s);
 Mach number (dimensionless), speed divided by the speed of sound;
 in natural units (dimensionless), speed divided by the speed of light in vacuum (symbol c = 792458 m/s). 299
m/s  km/h  mph  knot  ft/s  

1 m/s =  1  3.6  936 2.236  844 1.943  840 3.280 
1 km/h =  778 0.277  1  371 0.621  957 0.539  344 0.911 
1 mph =  04 0.447  344 1.609  1  976 0.868  667 1.466 
1 knot =  444 0.514  1.852  779 1.150  1  810 1.687 
1 ft/s =  0.3048  28 1.097  818 0.681  484 0.592  1 
(Values in bold face are exact.)
Examples of different speeds
This section needs additional citations for verification. (May 2013) (Learn how and when to remove this template message)

Speed  m/s  ft/s  km/h  mph  Notes 

Approximate rate of continental drift  00001 0.000  00003 0.000  00004 0.000  00002 0.000  4 cm/year. Varies depending on location. 
Speed of a common snail  0.001  0.003  0.004  0.002  1 millimetre per second 
A brisk walk  1.7  5.5  6.1  3.8  
A typical road cyclist  4.4  14.4  16  10  Varies widely by person, terrain, bicycle, effort, weather 
A fast martial arts kick  7.7  25.2  27.7  17.2  Fastest kick recorded at 130 milliseconds from floor to target at 1 meter distance. Average velocity speed across kick duration^{[7]} 
Sprint runners  12.2  40  43.92  27  Usain Bolt's 100 metres world record. 
Approximate average speed of road cyclists  12.5  41.0  45  28  On flat terrain, will vary 
Typical suburban speed limit in most of the world  13.8  45.3  50  30  
Taipei 101 observatory elevator  16.7  54.8  60.6  37.6  1010 m/min 
Typical rural speed limit  24.6  80.66  88.5  56  
British National Speed Limit (single carriageway)  26.8  88  96.56  60  
Category 1 hurricane  33  108  119  74  Minimum sustained speed over 1 minute 
Speed limit on a French autoroute  36.1  118  130  81  
Highest recorded humanpowered speed  37.02  121.5  133.2  82.8  Sam Whittingham in a recumbent bicycle^{[8]} 
Muzzle velocity of a paintball marker  90  295  320  200  
Cruising speed of a Boeing 7478 passenger jet  255  836  917  570  Mach 0.85 at 000 ft ( 35668 m) altitude 10 
The official land speed record  341.1  1119.1  1227.98  763  
The speed of sound in dry air at sealevel pressure and 20 °C  343  1125  1235  768  Mach 1 by definition. 20 °C = 293.15 kelvins. 
Muzzle velocity of a 7.62x39mm cartridge  710  2330  2600  1600  The 7.62×39mm round is a rifle cartridge of Soviet origin 
Official flight airspeed record for jet engined aircraft  980  3215  3530  2194  Lockheed SR71 Blackbird 
Space shuttle on reentry  7800  600 25  000 28  17,500  
Escape velocity on Earth  200 11  700 36  000 40  000 25  11.2 km·s^{−1} 
Voyager 1 relative velocity to the Sun in 2013  000 17  800 55  200 61  000 38  Fastest heliocentric recession speed of any humanmade object.^{[9]} (11 mi/s) 
Average orbital speed of planet Earth around the Sun  783 29  713 97  218 107  623 66  
The fastest recorded speed of the Helios probes.  70,220  230,381  252,792  157,078  Recognized as the fastest speed achieved by a manmade spacecraft, achieved in solar orbit. 
Speed of light in vacuum (symbol c)  792458 299  571056 983  079252848 1  616629 670  Exactly 792458 m/s, by definition of the 299metre 
Psychology
According to Jean Piaget, the intuition for the notion of speed in humans precedes that of duration, and is based on the notion of outdistancing.^{[10]} Piaget studied this subject inspired by a question asked to him in 1928 by Albert Einstein: "In what order do children acquire the concepts of time and speed?"^{[11]} Children's early concept of speed is based on "overtaking", taking only temporal and spatial orders into consideration, specifically: "A moving object is judged to be more rapid than another when at a given moment the first object is behind and a moment or so later ahead of the other object."^{[12]}
See also
References
Look up speed or swiftness in Wiktionary, the free dictionary. 
Wikiquote has quotations related to: Speed 
 Richard P. Feynman, Robert B. Leighton, Matthew Sands. The Feynman Lectures on Physics, Volume I, Section 82. AddisonWesley, Reading, Massachusetts (1963). ISBN 0201021161.
 ^ Wilson, Edwin Bidwell (1901). Vector analysis: a textbook for the use of students of mathematics and physics, founded upon the lectures of J. Willard Gibbs. p. 125. This is the likely origin of the speed/velocity terminology in vector physics.
 ^ ^{a} ^{b} ^{c} Elert, Glenn. "Speed & Velocity". The Physics Hypertextbook. Retrieved 8 June 2017.
 ^ ^{a} ^{b} ^{c} Hewitt (2006), p. 42
 ^ "IEC 60050  Details for IEV number 1130133: "speed"". Electropedia: The World's Online Electrotechnical Vocabulary. Retrieved 20170608.
 ^ ^{a} ^{b} Hewitt (2006), p. 131
 ^ Hewitt (2006), p. 132
 ^ http://www.kickspeed.com.au/Improvemeasurekickingspeed.html
 ^ "Archived copy". Archived from the original on 20130811. Retrieved 20131012.
 ^ Darling, David. "Fastest Spacecraft". Retrieved August 19, 2013.
 ^ Jean Piaget, Psychology and Epistemology: Towards a Theory of Knowledge, The Viking Press, pp. 82–83 and pp. 110–112, 1973. SBN 67000362x
 ^ Siegler, Robert S.; Richards, D. Dean (1979). "Development of Time, Speed, and Distance Concepts" (PDF). Developmental Psychology. 15 (3): 288–298. doi:10.1037/00121649.15.3.288.
 ^ Rod ParkerRees and Jenny William, eds. (2006). Early Years Education: Histories and Traditions, Volume 1. Taylor & Francis. p. 164.