Representer theorem
This article provides insufficient context for those unfamiliar with the subject.Learn how and when to remove this template message)
(June 2012) ( 
In statistical learning theory, a representer theorem is any of several related results stating that a minimizer of a regularized empirical risk function defined over a reproducing kernel Hilbert space can be represented as a finite linear combination of kernel products evaluated on the input points in the training set data.
Formal statement
The following Representer Theorem and its proof are due to Schölkopf, Herbrich, and Smola:
Theorem: Let be a nonempty set and a positivedefinite realvalued kernel on with corresponding reproducing kernel Hilbert space . Given a training sample , a strictly monotonically increasing realvalued function , and an arbitrary empirical risk function , then for any satisfying
admits a representation of the form:
where for all .
Proof: Define a mapping
(so that is itself a map ). Since is a reproducing kernel, then
where is the inner product on .
Given any , one can use orthogonal projection to decompose any into a sum of two functions, one lying in , and the other lying in the orthogonal complement:
where for all .
The above orthogonal decomposition and the reproducing property together show that applying to any training point produces
which we observe is independent of . Consequently, the value of the empirical risk in (*) is likewise independent of . For the second term (the regularization term), since is orthogonal to and is strictly monotonic, we have
Therefore setting does not affect the first term of (*), while it strictly decreasing the second term. Consequently, any minimizer in (*) must have , i.e., it must be of the form
which is the desired result.
Generalizations
The Theorem stated above is a particular example of a family of results that are collectively referred to as "representer theorems"; here we describe several such.
The first statement of a representer theorem was due to Kimeldorf and Wahba for the special case in which
for . Schölkopf, Herbrich, and Smola generalized this result by relaxing the assumption of the squaredloss cost and allowing the regularizer to be any strictly monotonically increasing function of the Hilbert space norm.
It is possible to generalize further by augmenting the regularized empirical risk function through the addition of unpenalized offset terms. For example, Schölkopf, Herbrich, and Smola also consider the minimization
i.e., we consider functions of the form , where and is an unpenalized function lying in the span of a finite set of realvalued functions . Under the assumption that the matrix has rank , they show that the minimizer in admits a representation of the form
where and the are all uniquely determined.
The conditions under which a representer theorem exists were investigated by Argyriou, Miccheli, and Pontil, who proved the following:
Theorem: Let be a nonempty set, a positivedefinite realvalued kernel on with corresponding reproducing kernel Hilbert space , and let be a differentiable regularization function. Then given a training sample and an arbitrary empirical risk function , a minimizer
of the regularized empirical risk minimization problem admits a representation of the form
where for all , if and only if there exists a nondecreasing function for which
Effectively, this result provides a necessary and sufficient condition on a differentiable regularizer under which the corresponding regularized empirical risk minimization will have a representer theorem. In particular, this shows that a broad class of regularized risk minimizations (much broader than those originally considered by Kimeldorf and Wahba) have representer theorems.
Applications
Representer theorems are useful from a practical standpoint because they dramatically simplify the regularized empirical risk minimization problem . In most interesting applications, the search domain for the minimization will be an infinitedimensional subspace of , and therefore the search (as written) does not admit implementation on finitememory and finiteprecision computers. In contrast, the representation of afforded by a representer theorem reduces the original (infinitedimensional) minimization problem to a search for the optimal dimensional vector of coefficients ; can then be obtained by applying any standard function minimization algorithm. Consequently, representer theorems provide the theoretical basis for the reduction of the general machine learning problem to algorithms that can actually be implemented on computers in practice.
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (June 2012) (Learn how and when to remove this template message)

See also
References
 Argyriou, Andreas; Micchelli, Charles A.; Pontil, Massimiliano (2009). "When Is There a Representer Theorem? Vector Versus Matrix Regularizers". Journal of Machine Learning Research. 10 (Dec): 2507–2529.
 Cucker, Felipe; Smale, Steve (2002). "On the Mathematical Foundations of Learning". Bulletin of the American Mathematical Society. 39 (1): 1–49. doi:10.1090/S0273097901009235. MR 1864085.
 Kimeldorf, George S.; Wahba, Grace (1970). "A correspondence between Bayesian estimation on stochastic processes and smoothing by splines". The Annals of Mathematical Statistics. 41 (2): 495–502. doi:10.1214/aoms/1177697089.
 Schölkopf, Bernhard; Herbrich, Ralf; Smola, Alex J. (2001). "A Generalized Representer Theorem". Computational Learning Theory. Lecture Notes in Computer Science. 2111: 416–426. doi:10.1007/3540445811_27. ISBN 9783540423430.