Quantum computing
Quantum computing is computing using quantummechanical phenomena, such as superposition and entanglement.^{[1]} A quantum computer is a device that performs quantum computing. Such a computer is different from binary digital electronic computers based on transistors. Whereas common digital computing requires that the data be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), quantum computation uses quantum bits or qubits, which can be in superpositions of states. A quantum Turing machine is a theoretical model of such a computer, and is also known as the universal quantum computer. The field of quantum computing was initiated by the work of Paul Benioff^{[2]} and Yuri Manin in 1980,^{[3]} Richard Feynman in 1982,^{[4]} and David Deutsch in 1985.^{[5]}
As of 2018,^{[update]} the development of actual quantum computers is still in its infancy, but experiments have been carried out in which quantum computational operations were executed on a very small number of quantum bits.^{[6]} Both practical and theoretical research continues, and many national governments and military agencies are funding quantum computing research in additional effort to develop quantum computers for civilian, business, trade, environmental and national security purposes, such as cryptanalysis.^{[7]} A small 20qubit quantum computer exists and is available for experiments via the IBM Quantum Experience project. DWave Systems has been developing their own version of a quantum computer that uses annealing.^{[8]}
Largescale quantum computers would theoretically be able to solve certain problems much more quickly than any classical computers that use even the best currently known algorithms, like integer factorization using Shor's algorithm (which is a quantum algorithm) and the simulation of quantum manybody systems. There exist quantum algorithms, such as Simon's algorithm, that run faster than any possible probabilistic classical algorithm.^{[9]} A classical computer could in principle (with exponential resources) simulate a quantum algorithm, as quantum computation does not violate the Church–Turing thesis.^{[10]}^{:202} On the other hand, quantum computers may be able to efficiently solve problems which are not practically feasible on classical computers.
Contents
Basics
A classical computer has a memory made up of bits, where each bit is represented by either a one or a zero. A quantum computer, on the other hand, maintains a sequence of qubits, which can represent a one, a zero, or any quantum superposition of those two qubit states;^{[10]}^{:13–16} a pair of qubits can be in any quantum superposition of 4 states,^{[10]}^{:16} and three qubits in any superposition of 8 states. In general, a quantum computer with qubits can be in an arbitrary superposition of up to different states simultaneously.^{[10]}^{:17} (This compares to a normal computer that can only be in one of these states at any one time).
A quantum computer operates on its qubits using quantum gates and measurement (which also alters the observed state). An algorithm is composed of a fixed sequence of quantum logic gates and a problem is encoded by setting the initial values of the qubits, similar to how a classical computer works. The calculation usually ends with a measurement, collapsing the system of qubits into one of the eigenstates, where each qubit is zero or one, decomposing into a classical state. The outcome can therefore be at most classical bits of information (or, if the algorithm did not end with a measurement, the result is an unobserved quantum state).
Quantum algorithms are often probabilistic, in that they provide the correct solution only with a certain known probability.^{[11]} Note that the term nondeterministic computing must not be used in that case to mean probabilistic (computing), because the term nondeterministic has a different meaning in computer science.
An example of an implementation of qubits of a quantum computer could start with the use of particles with two spin states: "down" and "up" (typically written and , or and ). This is true because any such system can be mapped onto an effective spin1/2 system.
Principles of operation
This section includes a list of references, but its sources remain unclear because it has insufficient inline citations. (February 2018) (Learn how and when to remove this template message)

A quantum computer with a given number of qubits is fundamentally different from a classical computer composed of the same number of classical bits. For example, representing the state of an nqubit system on a classical computer requires the storage of 2^{n} complex coefficients, while to characterize the state of a classical nbit system it is sufficient to provide the values of the n bits, that is, only n numbers. Although this fact may seem to indicate that qubits can hold exponentially more information than their classical counterparts, care must be taken not to overlook the fact that the qubits are only in a probabilistic superposition of all of their states. This means that when the final state of the qubits is measured, they will only be found in one of the possible configurations they were in before the measurement. It is generally incorrect to think of a system of qubits as being in one particular state before the measurement, since the fact that they were in a superposition of states before the measurement was made directly affects the possible outcomes of the computation.
To better understand this point, consider a classical computer that operates on a threebit register. If the exact state of the register at a given time is not known, it can be described as a probability distribution over the different threebit strings 000, 001, 010, 011, 100, 101, 110, and 111. If there is no uncertainty over its state, then it is in exactly one of these states with probability 1. However, if it is a probabilistic computer, then there is a possibility of it being in any one of a number of different states.
The state of a threequbit quantum computer is similarly described by an eightdimensional vector (or a one dimensional vector with each vector node holding the amplitude and the state as the bit string of qubits). Here, however, the coefficients are complex numbers, and it is the sum of the squares of the coefficients' absolute values, , that must equal 1. For each , the absolute value squared gives the probability of the system being found in the th state after a measurement. However, because a complex number encodes not just a magnitude but also a direction in the complex plane, the phase difference between any two coefficients (states) represents a meaningful parameter. This is a fundamental difference between quantum computing and probabilistic classical computing.^{[13]}
If you measure the three qubits, you will observe a threebit string. The probability of measuring a given string is the squared magnitude of that string's coefficient (i.e., the probability of measuring 000 = , the probability of measuring 001 = , etc.). Thus, measuring a quantum state described by complex coefficients gives the classical probability distribution and we say that the quantum state "collapses" to a classical state as a result of making the measurement.
An eightdimensional vector can be specified in many different ways depending on what basis is chosen for the space. The basis of bit strings (e.g., 000, 001, …, 111) is known as the computational basis. Other possible bases are unitlength, orthogonal vectors and the eigenvectors of the Paulix operator. Ket notation is often used to make the choice of basis explicit. For example, the state in the computational basis can be written as:
 where, e.g.,
The computational basis for a single qubit (two dimensions) is and .
Using the eigenvectors of the Paulix operator, a single qubit is and .
Operation
This section does not cite any sources. (February 2018) (Learn how and when to remove this template message)

Unsolved problem in physics: (more unsolved problems in physics) 
While a classical 3bit state and a quantum 3qubit state are each eightdimensional vectors, they are manipulated quite differently for classical or quantum computation. For computing in either case, the system must be initialized, for example into the allzeros string, , corresponding to the vector (1,0,0,0,0,0,0,0). In classical randomized computation, the system evolves according to the application of stochastic matrices, which preserve that the probabilities add up to one (i.e., preserve the L1 norm). In quantum computation, on the other hand, allowed operations are unitary matrices, which are effectively rotations (they preserve that the sum of the squares add up to one, the Euclidean or L2 norm). (Exactly what unitaries can be applied depend on the physics of the quantum device.) Consequently, since rotations can be undone by rotating backward, quantum computations are reversible. (Technically, quantum operations can be probabilistic combinations of unitaries, so quantum computation really does generalize classical computation. See quantum circuit for a more precise formulation.)
Finally, upon termination of the algorithm, the result needs to be read off. In the case of a classical computer, we sample from the probability distribution on the threebit register to obtain one definite threebit string, say 000. Quantum mechanically, one measures the threequbit state, which is equivalent to collapsing the quantum state down to a classical distribution (with the coefficients in the classical state being the squared magnitudes of the coefficients for the quantum state, as described above), followed by sampling from that distribution. This destroys the original quantum state. Many algorithms will only give the correct answer with a certain probability. However, by repeatedly initializing, running and measuring the quantum computer's results, the probability of getting the correct answer can be increased. In contrast, counterfactual quantum computation allows the correct answer to be inferred when the quantum computer is not actually running in a technical sense, though earlier initialization and frequent measurements are part of the counterfactual computation protocol.
For more details on the sequences of operations used for various quantum algorithms, see universal quantum computer, Shor's algorithm, Grover's algorithm, Deutsch–Jozsa algorithm, amplitude amplification, quantum Fourier transform, quantum gate, quantum adiabatic algorithm and quantum error correction.
Potential
Cryptography
Integer factorization, which underpins the security of public key cryptographic systems, is believed to be computationally infeasible with an ordinary computer for large integers if they are the product of few prime numbers (e.g., products of two 300digit primes).^{[14]} By comparison, a quantum computer could efficiently solve this problem using Shor's algorithm to find its factors. This ability would allow a quantum computer to break many of the cryptographic systems in use today, in the sense that there would be a polynomial time (in the number of digits of the integer) algorithm for solving the problem. In particular, most of the popular public key ciphers are based on the difficulty of factoring integers or the discrete logarithm problem, both of which can be solved by Shor's algorithm. In particular the RSA, Diffie–Hellman, and elliptic curve Diffie–Hellman algorithms could be broken. These are used to protect secure Web pages, encrypted email, and many other types of data. Breaking these would have significant ramifications for electronic privacy and security.
However, other cryptographic algorithms do not appear to be broken by those algorithms.^{[15]}^{[16]} Some publickey algorithms are based on problems other than the integer factorization and discrete logarithm problems to which Shor's algorithm applies, like the McEliece cryptosystem based on a problem in coding theory.^{[15]}^{[17]} Latticebased cryptosystems are also not known to be broken by quantum computers, and finding a polynomial time algorithm for solving the dihedral hidden subgroup problem, which would break many lattice based cryptosystems, is a wellstudied open problem.^{[18]} It has been proven that applying Grover's algorithm to break a symmetric (secret key) algorithm by brute force requires time equal to roughly 2^{n/2} invocations of the underlying cryptographic algorithm, compared with roughly 2^{n} in the classical case,^{[19]} meaning that symmetric key lengths are effectively halved: AES256 would have the same security against an attack using Grover's algorithm that AES128 has against classical bruteforce search (see Key size). Quantum cryptography could potentially fulfill some of the functions of public key cryptography. Quantumbased cryptographic systems could therefore be more secure than traditional systems against quantum hacking.^{[20]}
Quantum Search
Besides factorization and discrete logarithms, quantum algorithms offering a more than polynomial speedup over the best known classical algorithm have been found for several problems,^{[21]} including the simulation of quantum physical processes from chemistry and solid state physics, the approximation of Jones polynomials, and solving Pell's equation. No mathematical proof has been found that shows that an equally fast classical algorithm cannot be discovered, although this is considered unlikely.^{[22]} For some problems, quantum computers offer a polynomial speedup. The most wellknown example of this is quantum database search, which can be solved by Grover's algorithm using quadratically fewer queries to the database than are required by classical algorithms. In this case the advantage is not only provable, but also optimal, it has been shown that Grover's algorithm gives the maximal possible probability of finding the desired element for any number of oracle lookups. Several other examples of provable quantum speedups for query problems have subsequently been discovered, such as for finding collisions in twotoone functions and evaluating NAND trees.
Problems that can be addressed with Grover's algorithm have the following properties:
 There is no searchable structure in the collection of possible answers,
 The number of possible answers to check is the same as the number of inputs to the algorithm, and
 There exists a boolean function which evaluates each input and determines whether it is the correct answer
For problems with all these properties, the running time of Grover's algorithm on a quantum computer will scale as the square root of the number of inputs (or elements in the database), as opposed to the linear scaling of classical algorithms. A general class of problems to which Grover's algorithm can be applied ^{[23]} is Boolean satisfiability problem. In this instance, the database through which the algorithm is iterating is that of all possible answers. An example (and possible) application of this is a password cracker that attempts to guess the password or secret key for an encrypted file or system. Symmetric ciphers such as Triple DES and AES are particularly vulnerable to this kind of attack.^{[24]} This application of quantum computing is a major interest of government agencies.^{[25]}
Quantum Simulation
Since chemistry and nanotechnology rely on understanding quantum systems, and such systems are impossible to simulate in an efficient manner classically, many believe quantum simulation will be one of the most important applications of quantum computing.^{[26]} Quantum simulation could also be used to simulate the behavior of atoms and particles at unusual conditions such as the reactions inside a collider.^{[27]}
Quantum Annealing & Adiabatic Optimisation
Adiabatic quantum computation relies on the adiabatic theorem to undertake calculations. A system is placed in the ground state for a simple Hamiltonian, which is slowly evolved to a more complicated Hamiltonian whose ground state represents the solution to the problem in question. The adiabatic theorem states that if the evolution is slow enough the system will stay in its ground state at all times through the process.
Solving Linear Equations
The Quantum algorithm for linear systems of equations or "HHL Algorithm", named after its discoverers Harrow, Hassidim and Lloyd, is expected to provide speedup over classical counterparts.^{[28]}
Quantum Supremacy
John Preskill has introduced the term quantum supremacy to refer to the hypothetical speedup advantage that a quantum computer would have over a classical computer in a certain field.^{[29]} Google announced in 2017 that it expected to achieve quantum supremacy by the end of the year, and IBM says that the best classical computers will be beaten on some task within about five years.^{[30]} Quantum supremacy has not been achieved yet, and skeptics like Gil Kalai doubt that it will ever be.^{[31]}^{[32]} Bill Unruh doubted the practicality of quantum computers in a paper published back in 1994.^{[33]} Paul Davies pointed out that a 400qubit computer would even come into conflict with the cosmological information bound implied by the holographic principle.^{[34]} Those such as Roger Schlafly have pointed out that the claimed theoretical benefits of quantum computing go beyond the proven theory of quantum mechanics and imply nonstandard interpretations, such as multiple worlds and negative probabilities. Schlafly maintains that the Born rule is just "metaphysical fluff" and that quantum mechanics does not rely on probability any more than other branches of science but simply calculates the expected values of observables. He also points out that arguments about Turing complexity cannot be run backwards.^{[35]}^{[36]}^{[37]} Those who prefer Bayesian interpretations of quantum mechanics have questioned the physical nature of the mathematical abstractions employed.^{[38]}
Obstacles
There are a number of technical challenges in building a largescale quantum computer, and thus far quantum computers have yet to solve a problem faster than a classical computer. David DiVincenzo, of IBM, listed the following requirements for a practical quantum computer:^{[39]}
 scalable physically to increase the number of qubits;
 qubits that can be initialized to arbitrary values;
 quantum gates that are faster than decoherence time;
 universal gate set;
 qubits that can be read easily.
Quantum decoherence
One of the greatest challenges is controlling or removing quantum decoherence. This usually means isolating the system from its environment as interactions with the external world cause the system to decohere. However, other sources of decoherence also exist. Examples include the quantum gates, and the lattice vibrations and background thermonuclear spin of the physical system used to implement the qubits. Decoherence is irreversible, as it is effectively nonunitary, and is usually something that should be highly controlled, if not avoided. Decoherence times for candidate systems, in particular the transverse relaxation time T_{2} (for NMR and MRI technology, also called the dephasing time), typically range between nanoseconds and seconds at low temperature.^{[13]} Currently, some quantum computers require their qubits to be cooled to 20 millikelvins in order to prevent significant decoherence.^{[40]}
As a result, time consuming tasks may render some quantum algorithms inoperable, as maintaining the state of qubits for a long enough duration will eventually corrupt the superpositions.^{[41]}
These issues are more difficult for optical approaches as the timescales are orders of magnitude shorter and an oftencited approach to overcoming them is optical pulse shaping. Error rates are typically proportional to the ratio of operating time to decoherence time, hence any operation must be completed much more quickly than the decoherence time.
As described in the Quantum threshold theorem, if the error rate is small enough, it is thought to be possible to use quantum error correction to suppress errors and decoherence. This allows the total calculation time to be longer than the decoherence time if the error correction scheme can correct errors faster than decoherence introduces them. An often cited figure for required error rate in each gate for fault tolerant computation is 10^{−3}, assuming the noise is depolarizing.
Meeting this scalability condition is possible for a wide range of systems. However, the use of error correction brings with it the cost of a greatly increased number of required qubits. The number required to factor integers using Shor's algorithm is still polynomial, and thought to be between L and L^{2}, where L is the number of qubits in the number to be factored; error correction algorithms would inflate this figure by an additional factor of L. For a 1000bit number, this implies a need for about 10^{4} bits without error correction.^{[42]} With error correction, the figure would rise to about 10^{7} bits. Computation time is about L^{2} or about 10^{7} steps and at 1 MHz, about 10 seconds.
A very different approach to the stabilitydecoherence problem is to create a topological quantum computer with anyons, quasiparticles used as threads and relying on braid theory to form stable logic gates.^{[43]}^{[44]}
Developments
Quantum Computing Models
There are a number of quantum computing models, distinguished by the basic elements in which the computation is decomposed. The four main models of practical importance are:
 Quantum gate array (computation decomposed into sequence of fewqubit quantum gates)
 Oneway quantum computer (computation decomposed into sequence of onequbit measurements applied to a highly entangled initial state or cluster state)
 Adiabatic quantum computer, based on quantum annealing (computation decomposed into a slow continuous transformation of an initial Hamiltonian into a final Hamiltonian, whose ground states contain the solution)^{[45]}
 Topological quantum computer^{[46]} (computation decomposed into the braiding of anyons in a 2D lattice)
The quantum Turing machine is theoretically important but direct implementation of this model is not pursued. All four models of computation have been shown to be equivalent; each can simulate the other with no more than polynomial overhead.
Physical Realisations
For physically implementing a quantum computer, many different candidates are being pursued, among them (distinguished by the physical system used to realize the qubits):
 Superconducting quantum computing^{[47]}^{[48]} (qubit implemented by the state of small superconducting circuits (Josephson junctions))
 Trapped ion quantum computer (qubit implemented by the internal state of trapped ions)
 Optical lattices (qubit implemented by internal states of neutral atoms trapped in an optical lattice)
 Quantum dot computer, spinbased (e.g. the LossDiVincenzo quantum computer^{[49]}) (qubit given by the spin states of trapped electrons)
 Quantum dot computer, spatialbased (qubit given by electron position in double quantum dot)^{[50]}
 Coupled Quantum Wire (qubit implemented by a pair of Quantum Wires coupled by a Quantum Point Contact)^{[51]}^{[52]}^{[53]}
 Nuclear magnetic resonance on molecules in solution (liquidstate NMR) (qubit provided by nuclear spins within the dissolved molecule)
 Solidstate NMR Kane quantum computers (qubit realized by the nuclear spin state of phosphorus donors in silicon)
 Electronsonhelium quantum computers (qubit is the electron spin)
 Cavity quantum electrodynamics (CQED) (qubit provided by the internal state of trapped atoms coupled to highfinesse cavities)
 Molecular magnet^{[54]} (qubit given by spin states)
 Fullerenebased ESR quantum computer (qubit based on the electronic spin of atoms or molecules encased in fullerenes)
 Linear optical quantum computer (qubits realized by processing states of different modes of light through linear elements e.g. mirrors, beam splitters and phase shifters)^{[55]}
 Diamondbased quantum computer^{[56]}^{[57]}^{[58]} (qubit realized by electronic or nuclear spin of nitrogenvacancy centers in diamond)
 Bose–Einstein condensatebased quantum computer^{[59]}
 Transistorbased quantum computer – string quantum computers with entrainment of positive holes using an electrostatic trap
 Rareearthmetaliondoped inorganic crystal based quantum computers^{[60]}^{[61]} (qubit realized by the internal electronic state of dopants in optical fibers)
 Metalliclike carbon nanospheres based quantum computers^{[62]}
The large number of candidates demonstrates that the topic, in spite of rapid progress, is still in its infancy. There is also a vast amount of flexibility.
Timeline
In 1959 Richard Feynman in his lecture "There's Plenty of Room at the Bottom" states the possibility of using quantum effects for computation.
In 1980 Paul Benioff described quantum mechanical Hamiltonian models of computers^{[63]} and the Russian mathematician Yuri Manin motivated the development of quantum computers.^{[64]}
In 1981, at a conference coorganized by MIT and IBM, physicist Richard Feynman urged the world to build a quantum computer. He said "Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."^{[65]}
In 1984, BB84 is published, the world's first quantum cryptography protocol by IBM scientists Charles Bennett and Gilles Brassard.
In 1993, an international group of six scientists, including Charles Bennett, showed that perfect quantum teleportation is possible^{[66]} in principle, but only if the original is destroyed.
In 1994 Peter Shor, at AT&T's Bell Labs discovered an important quantum algorithm, which allows a quantum computer to factor large integers exponentially much faster than the best known classical algorithm. Shor's algorithm can theoretically break many of the publickey cryptosystems in use today.^{[67]} Its invention sparked a tremendous interest in quantum computers.
In 1996, The DiVincenzo's criteria are published which is a list of conditions that are necessary for constructing a quantum computer proposed by the theoretical physicist David P. DiVincenzo in his 2000 paper "The Physical Implementation of Quantum Computation".
In 2001, researchers demonstrated Shor's algorithm to factor 15 using a 7qubit NMR computer.^{[68]}
In 2005, researchers at the University of Michigan built a semiconductor chip ion trap. Such devices from standard lithography, may point the way to scalable quantum computing.^{[69]}
In 2009, researchers at Yale University created the first solidstate quantum processor. The twoqubit superconducting chip had artificial atom qubits made of a billion aluminum atoms that acted like a single atom that could occupy two states.^{[70]}^{[71]}
A team at the University of Bristol, also created a silicon chip based on quantum optics, able to run Shor's algorithm.^{[72]} Further developments were made in 2010.^{[73]} Springer publishes a journal (Quantum Information Processing) devoted to the subject.^{[74]}
In February 2010, Digital Combinational Circuits like adder, subtractor etc. are designed with the help of Symmetric Functions organized from different quantum gates.^{[75]}^{[76]}
In April 2011, a team of scientists from Australia and Japan made a breakthrough in quantum teleportation. They successfully transferred a complex set of quantum data with full transmission integrity, without affecting the qubits' superpositions.^{[77]}^{[78]}
In 2011, DWave Systems announced the first commercial quantum annealer, the DWave One, claiming a 128 qubit processor. On May 25, 2011, Lockheed Martin agreed to purchase a DWave One system.^{[79]} Lockheed and the University of Southern California (USC) will house the DWave One at the newly formed USC Lockheed Martin Quantum Computing Center.^{[80]} DWave's engineers designed the chips with an empirical approach, focusing on solving particular problems. Investors liked this more than academics, who said DWave had not demonstrated they really had a quantum computer. Criticism softened after a DWave paper in Nature, that proved the chips have some quantum properties.^{[81]}^{[82]} Two published papers have suggested that the DWave machine's operation can be explained classically, rather than requiring quantum models.^{[83]}^{[84]} Later work showed that classical models are insufficient when all available data is considered.^{[85]} Experts remain divided on the ultimate classification of the DWave systems though their quantum behavior was established concretely with a demonstration of entanglement.^{[86]}
During the same year, researchers at the University of Bristol created an allbulk optics system that ran a version of Shor's algorithm to successfully factor 21.^{[87]}
In September 2011 researchers proved quantum computers can be made with a Von Neumann architecture (separation of RAM).^{[88]}
In November 2011 researchers factorized 143 using 4 qubits.^{[89]}
In February 2012 IBM scientists said that they had made several breakthroughs in quantum computing with superconducting integrated circuits.^{[90]}
In April 2012 a multinational team of researchers from the University of Southern California, Delft University of Technology, the Iowa State University of Science and Technology, and the University of California, Santa Barbara, constructed a twoqubit quantum computer on a doped diamond crystal that can easily be scaled up and is functional at room temperature. Two logical qubit directions of electron spin and nitrogen kernels spin were used, with microwave impulses. This computer ran Grover's algorithm generating the right answer from the first try in 95% of cases.^{[91]}
In September 2012, Australian researchers at the University of New South Wales said the world's first quantum computer was just 5 to 10 years away, after announcing a global breakthrough enabling manufacture of its memory building blocks. A research team led by Australian engineers created the first working qubit based on a single atom in silicon, invoking the same technological platform that forms the building blocks of modernday computers.^{[92]}^{[93]}
In October 2012, Nobel Prizes were presented to David J. Wineland and Serge Haroche for their basic work on understanding the quantum world, which may help make quantum computing possible.^{[94]}^{[95]}
In November 2012, the first quantum teleportation from one macroscopic object to another was reported by scientists at the University of Science and Technology of China in Hefei.^{[96]}^{[97]}
In December 2012, the first dedicated quantum computing software company, 1QBit was founded in Vancouver, BC.^{[98]} 1QBit is the first company to focus exclusively on commercializing software applications for commercially available quantum computers, including the DWave Two. 1QBit's research demonstrated the ability of superconducting quantum annealing processors to solve realworld problems.^{[99]}
In February 2013, a new technique, boson sampling, was reported by two groups using photons in an optical lattice that is not a universal quantum computer but may be good enough for practical problems. Science Feb 15, 2013
In May 2013, Google announced that it was launching the Quantum Artificial Intelligence Lab, hosted by NASA's Ames Research Center, with a 512qubit DWave quantum computer. The USRA (Universities Space Research Association) will invite researchers to share time on it with the goal of studying quantum computing for machine learning.^{[100]} Google added that they had "already developed some quantum machine learning algorithms" and had "learned some useful principles", such as that "best results" come from "mixing quantum and classical computing".^{[100]}
In early 2014 it was reported, based on documents provided by former NSA contractor Edward Snowden, that the U.S. National Security Agency (NSA) is running a $79.7 million research program (titled "Penetrating Hard Targets") to develop a quantum computer capable of breaking vulnerable encryption.^{[101]}
In 2014, a group of researchers from ETH Zürich, USC, Google and Microsoft reported a definition of quantum speedup, and were not able to measure quantum speedup with the DWave Two device, but did not explicitly rule it out.^{[102]}^{[103]}
In 2014, researchers at University of New South Wales used silicon as a protectant shell around qubits, making them more accurate, increasing the length of time they will hold information, and possibly making quantum computers easier to build.^{[104]}
In April 2015 IBM scientists claimed two critical advances towards the realization of a practical quantum computer. They claimed the ability to detect and measure both kinds of quantum errors simultaneously, as well as a new, square quantum bit circuit design that could scale to larger dimensions.^{[105]}
In October 2015 researchers at University of New South Wales built a quantum logic gate in silicon for the first time.^{[106]}
In December 2015 NASA publicly displayed the world's first fully operational $15million quantum computer made by the Canadian company DWave at the Quantum Artificial Intelligence Laboratory at its Ames Research Center in California's Moffett Field. The device was purchased in 2013 via a partnership with Google and Universities Space Research Association. The presence and use of quantum effects in the DWave quantum processing unit is more widely accepted.^{[107]} In some tests it can be shown that the DWave quantum annealing processor outperforms Selby’s algorithm.^{[108]} Only two of this computer have been made so far.
In May 2016, IBM Research announced^{[109]} that for the first time ever it is making quantum computing available to members of the public via the cloud, who can access and run experiments on IBM’s quantum processor. The service is called the IBM Quantum Experience. The quantum processor is composed of five superconducting qubits and is housed at the IBM T. J. Watson Research Center in New York.
In August 2016, scientists at the University of Maryland successfully built the first reprogrammable quantum computer.^{[110]}
In October 2016 Basel University described a variant of the electron hole based quantum computer, which instead of manipulating electron spins uses electron holes in a semiconductor at low (mK) temperatures which are a lot less vulnerable to decoherence. This has been dubbed the "positronic" quantum computer as the quasiparticle behaves like it has a positive electrical charge.^{[111]}
In March 2017, IBM announced an industryfirst initiative to build commercially available universal quantum computing systems called IBM Q. The company also released a new API (Application Program Interface) for the IBM Quantum Experience that enables developers and programmers to begin building interfaces between its existing five quantum bit (qubit) cloudbased quantum computer and classical computers, without needing a deep background in quantum physics.
In May 2017, IBM announced^{[112]} that it has successfully built and tested its most powerful universal quantum computing processors. The first is a 16 qubit processor that will allow for more complex experimentation than the previously available 5 qubit processor. The second is IBM's first prototype commercial processor with 17 qubits and leverages significant materials, device, and architecture improvements to make it the most powerful quantum processor created to date by IBM.
In July 2017, a group of U.S. researchers announced a quantum simulator with 51 qubits. The announcement was made by Mikhail Lukin of Harvard University at the International Conference on Quantum Technologies in Moscow.^{[113]} A quantum simulator differs from a computer. Lukin’s simulator was designed to solve one equation. Solving a different equation would require building a new system. A computer can solve many different equations.
In September 2017, IBM Research scientists use a 7 qubit device to model the largest molecule,^{[114]} Beryllium hydride, ever by a quantum computer. The results were published as the cover story in the peerreviewed journal Nature.
In October 2017, IBM Research scientists successfully "broke the 49qubit simulation barrier" and simulated 49 and 56qubit shortdepth circuits, using the Lawrence Livermore National Laboratory's Vulcan supercomputer, and the University of Illinois' Cyclops Tensor Framework (originally developed at the University of California). The results were published in arxiv.^{[115]}
In November 2017, the University of Sydney research team in Australia successfully made a microwave circulator, an important quantum computer part, 1000 times smaller than a conventional circulator by using topological insulators to slow down the speed of light in a material.^{[116]}
In December 2017, IBM announced^{[117]} its first IBM Q Network clients. The companies, universities, and labs to explore practical quantum applications, using IBM Q 20 qubit commercial systems, for business and science include: JPMorgan Chase, Daimler AG, Samsung, JSR Corporation, Barclays, Hitachi Metals, Honda, Nagase, Keio University, Oak Ridge National Lab, Oxford University and University of Melbourne.
In December 2017, Microsoft released a preview version of a "Quantum Development Kit".^{[118]} It includes a programming language, Q#, which can be used to write programs that are run on an emulated quantum computer.
In 2017 DWave reported to start selling a 2000 qubit quantum computer.^{[119]}
In late 2017 and early 2018 IBM,^{[120]} Intel,^{[121]} and Google^{[122]} each reported testing quantum processors containing 50, 49, and 72 qubits, respectively, all realized using superconducting circuits. By number of qubits, these circuits are approaching the range in which simulating their quantum dynamics is expected to become prohibitive on classical computers, although it has been argued that further improvements in error rates are needed to put classical simulation out of reach.^{[123]}
In February 2018, scientists reported, for the first time, the discovery of a new form of light, which may involve polaritons, that could be useful in the development of quantum computers.^{[124]}^{[125]}
In February 2018, QuTech reported successfully testing a siliconbased twospinqubits quantum processor.^{[126]}
In June 2018, Intel begins testing siliconbased spinqubit processor, manufactured in the company's D1D Fab in Oregon.^{[127]}
In July 2018, a team led by the University of Sydney has achieved the world's first multiqubit demonstration of a quantum chemistry calculation performed on a system of trapped ions, one of the leading hardware platforms in the race to develop a universal quantum computer.^{[128]}
Relation to computational complexity theory
The class of problems that can be efficiently solved by quantum computers is called BQP, for "bounded error, quantum, polynomial time". Quantum computers only run probabilistic algorithms, so BQP on quantum computers is the counterpart of BPP ("bounded error, probabilistic, polynomial time") on classical computers. It is defined as the set of problems solvable with a polynomialtime algorithm, whose probability of error is bounded away from one half.^{[130]} A quantum computer is said to "solve" a problem if, for every instance, its answer will be right with high probability. If that solution runs in polynomial time, then that problem is in BQP.
BQP is contained in the complexity class #P (or more precisely in the associated class of decision problems P^{#P}),^{[131]} which is a subclass of PSPACE.
BQP is suspected to be disjoint from NPcomplete and a strict superset of P, but that is not known. Both integer factorization and discrete log are in BQP. Both of these problems are NP problems suspected to be outside BPP, and hence outside P. Both are suspected to not be NPcomplete. There is a common misconception that quantum computers can solve NPcomplete problems in polynomial time. That is not known to be true, and is generally suspected to be false.^{[131]}
The capacity of a quantum computer to accelerate classical algorithms has rigid limits—upper bounds of quantum computation's complexity. The overwhelming part of classical calculations cannot be accelerated on a quantum computer.^{[132]} A similar fact takes place for particular computational tasks, like the search problem, for which Grover's algorithm is optimal.^{[133]}
Bohmian Mechanics is a nonlocal hidden variable interpretation of quantum mechanics. It has been shown that a nonlocal hidden variable quantum computer could implement a search of an Nitem database at most in steps. This is slightly faster than the steps taken by Grover's algorithm. Neither search method will allow quantum computers to solve NPComplete problems in polynomial time.^{[134]}
Although quantum computers may be faster than classical computers for some problem types, those described above cannot solve any problem that classical computers cannot already solve. A Turing machine can simulate these quantum computers, so such a quantum computer could never solve an undecidable problem like the halting problem. The existence of "standard" quantum computers does not disprove the Church–Turing thesis.^{[135]} It has been speculated that theories of quantum gravity, such as Mtheory or loop quantum gravity, may allow even faster computers to be built. Currently, defining computation in such theories is an open problem due to the problem of time, i.e., there currently exists no obvious way to describe what it means for an observer to submit input to a computer and later receive output.^{[136]}^{[79]}
See also
 Chemical computer
 DNA computing
 Electronic quantum holography
 Intelligence Advanced Research Projects Activity
 Kane quantum computer
 List of emerging technologies
 List of quantum processors
 Natural computing
 Normal mode
 Photonic computing
 Postquantum cryptography
 Quantum annealing
 Quantum bus
 Quantum cognition
 Quantum gate
 Quantum machine learning
 Quantum threshold theorem
 Soliton
 Theoretical computer science
 Timeline of quantum computing
 Topological quantum computer
 Valleytronics
References
 ^ Gershenfeld, Neil; Chuang, Isaac L. (June 1998). "Quantum Computing with Molecules" (PDF). Scientific American.
 ^ Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/BF01011339.
 ^ Manin, Yu. I. (1980). Vychislimoe i nevychislimoe [Computable and Noncomputable] (in Russian). Sov.Radio. pp. 13–15. Archived from the original on 20130510. Retrieved 20130304.
 ^ Feynman, R. P.u (1982). "Simulating physics with computers" (PDF). International Journal of Theoretical Physics. 21 (6): 467–488. Bibcode:1982IJTP...21..467F. CiteSeerX 10.1.1.45.9310. doi:10.1007/BF02650179.
 ^ Deutsch, David (1985). "Quantum Theory, the ChurchTuring Principle and the Universal Quantum Computer". Proceedings of the Royal Society of London A. 400 (1818): 97–117. Bibcode:1985RSPSA.400...97D. CiteSeerX 10.1.1.144.7936. doi:10.1098/rspa.1985.0070.
 ^ Gershon, Eric (20130114). "New qubit control bodes well for future of quantum computing". Phys.org. Retrieved 20141026.
 ^ Quantum Information Science and Technology Roadmap for a sense of where the research is heading.
 ^ "Explaining the upside and downside of DWave's new quantum computer". 20170126.
 ^ Simon, D.R. (1994). On the power of quantum computation. Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on. pp. 116–123. CiteSeerX 10.1.1.655.4355. doi:10.1109/SFCS.1994.365701. ISBN 9780818665806.
 ^ ^{a} ^{b} ^{c} ^{d} Nielsen, Michael A.; Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press. ISBN 9781107002173.
 ^ Preskill, John (2015). "Lecture Notes for Ph219/CS219: Quantum Information Chapter 5" (PDF). p. 12.
 ^ Waldner, JeanBaptiste (2007). Nanocomputers and Swarm Intelligence. London: ISTE. p. 157. ISBN 9782746215160.
 ^ ^{a} ^{b} DiVincenzo, David P. (1995). "Quantum Computation". Science. 270 (5234): 255–261. Bibcode:1995Sci...270..255D. CiteSeerX 10.1.1.242.2165. doi:10.1126/science.270.5234.255. (subscription required)
 ^ Lenstra, Arjen K. (2000). "Integer Factoring" (PDF). Designs, Codes and Cryptography. 19 (2/3): 101–128. doi:10.1023/A:1008397921377. Archived from the original (PDF) on 20150410.
 ^ ^{a} ^{b} Daniel J. Bernstein, Introduction to PostQuantum Cryptography. Introduction to Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen (editors). Postquantum cryptography. Springer, Berlin, 2009. ISBN 9783540887010
 ^ See also pqcrypto.org, a bibliography maintained by Daniel J. Bernstein and Tanja Lange on cryptography not known to be broken by quantum computing.
 ^ Robert J. McEliece. "A publickey cryptosystem based on algebraic coding theory." Jet Propulsion Laboratory DSN Progress Report 42–44, 114–116.
 ^ Kobayashi, H.; Gall, F.L. (2006). "Dihedral Hidden Subgroup Problem: A Survey". Information and Media Technologies. 1 (1): 178–185. ^{[permanent dead link]}
 ^ Bennett C.H., Bernstein E., Brassard G., Vazirani U., "The strengths and weaknesses of quantum computation". SIAM Journal on Computing 26(5): 1510–1523 (1997).
 ^ "What are quantum computers and how do they work? WIRED explains". Wired UK. 20180216.
 ^ Quantum Algorithm Zoo – Stephen Jordan's Homepage
 ^ Jon Schiller, Phd (20090619). Quantum Computers. ISBN 9781439243497.
 ^ Ambainis, Andris (2005). "Quantum search algorithms". arXiv:quantph/0504012.
 ^ Mavroeidis, Vasileios; Vishi, Kamer; d, Mateusz; Jøsang, Audun (March 2018). "The Impact of Quantum Computing on Present Cryptography". International Journal of Advanced Computer Science and Applications. 9 (3). arXiv:1804.00200. doi:10.14569/IJACSA.2018.090354.
 ^ Rich, Steven; Gellman, Barton (20140201). "NSA seeks to build quantum computer that could crack most types of encryption". Washington Post.
 ^ Norton, Quinn (20070215). "The Father of Quantum Computing". Wired.
 ^ Ambainis, Andris (Spring 2014). "What Can We Do with a Quantum Computer?". Institute for Advanced Study.
 ^ Ambainis, Andris; Hassidim, Avinatan; Lloyd, Seth (2008). "Quantum algorithm for solving linear systems of equations". Physical Review Letters. 103 (15): 150502. arXiv:0811.3171. doi:10.1103/PhysRevLett.103.150502. PMID 19905613.
 ^ Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; Jiang, Zhang; Bremner, Michael J.; Martinis, John M.; Neven, Hartmut (2018). "Characterizing Quantum Supremacy in NearTerm Devices". Nature Physics. 14 (6): 595–600. arXiv:1608.00263. doi:10.1038/s415670180124x.
 ^ Savage, Neil. "Quantum Computers Compete for "Supremacy"".
 ^ "Quantum Supremacy and Complexity". 23 April 2016.
 ^ Kalai, Gil. "The Quantum Computer Puzzle" (PDF). AMS.
 ^ Unruh, Bill (1995). "Maintaining coherence in Quantum Computers". Physical Review A. 51 (2): 992–997. arXiv:hepth/9406058. Bibcode:1995PhRvA..51..992U. doi:10.1103/PhysRevA.51.992.
 ^ Davies, Paul. "The implications of a holographic universe for quantum information science and the nature of physical law" (PDF). Macquarie University.
 ^ Schlafly, Roger. "Concise argument against quantum computing". Dark Buzz.
 ^ Schlafly, Roger. "Impossibility of quantum computers". Dark Buzz.
 ^ Schlafly, Roger. "No quantum probabilities needed". Dark Buzz.
 ^ Hestenes, David. "Hunting for Snarks in Quantum Mechanics" (PDF). Arizona State University.
 ^ DiVincenzo, David P. (20000413). "The Physical Implementation of Quantum Computation". Fortschritte der Physik. 48 (9–11): 771–783. arXiv:quantph/0002077. Bibcode:2000ForPh..48..771D. doi:10.1002/15213978(200009)48:9/11<771::AIDPROP771>3.0.CO;2E.
 ^ Jones, Nicola (19 June 2013). "Computing: The quantum company". Nature. 498 (7454): 286–288. Bibcode:2013Natur.498..286J. doi:10.1038/498286a. PMID 23783610.
 ^ Amy, Matthew; Matteo, Olivia; Gheorghiu, Vlad; Mosca, Michele; Parent, Alex; Schanck, John (November 30, 2016). "Estimating the cost of generic quantum preimage attacks on SHA2 and SHA3". arXiv:1603.09383 [quantph].
 ^ Dyakonov, M. I. (20061014). S. Luryi; J. Xu; A. Zaslavsky, eds. "Is FaultTolerant Quantum Computation Really Possible?". Future Trends in Microelectronics. Up the Nano Creek: 4–18. arXiv:quantph/0610117. Bibcode:2006quant.ph.10117D.
 ^ Freedman, Michael H.; Kitaev, Alexei; Larsen, Michael J.; Wang, Zhenghan (2003). "Topological quantum computation". Bulletin of the American Mathematical Society. 40 (1): 31–38. arXiv:quantph/0101025. doi:10.1090/S0273097902009643. MR 1943131.
 ^ Monroe, Don (20081001). "Anyons: The breakthrough quantum computing needs?". New Scientist.
 ^ Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv:0801.2193. Bibcode:2008RvMP...80.1061D. CiteSeerX 10.1.1.563.9990. doi:10.1103/RevModPhys.80.1061.
 ^ Nayak, Chetan; Simon, Steven; Stern, Ady; Das Sarma, Sankar (2008). "Nonabelian Anyons and Quantum Computation". Rev Mod Phys. 80 (3): 1083–1159. arXiv:0707.1889. Bibcode:2008RvMP...80.1083N. doi:10.1103/RevModPhys.80.1083.
 ^ Clarke, John; Wilhelm, Frank (June 19, 2008). "Superconducting quantum bits". Nature. 453 (7198): 1031–1042. Bibcode:2008Natur.453.1031C. doi:10.1038/nature07128. PMID 18563154.
 ^ Kaminsky, William M (2004). "Scalable Superconducting Architecture for Adiabatic Quantum Computation". arXiv:quantph/0403090.
 ^ Imamoğlu, Atac; Awschalom, D. D.; Burkard, Guido; DiVincenzo, D. P.; Loss, D.; Sherwin, M.; Small, A. (1999). "Quantum information processing using quantum dot spins and cavityQED". Physical Review Letters. 83 (20): 4204–4207. arXiv:quantph/9904096. Bibcode:1999PhRvL..83.4204I. doi:10.1103/PhysRevLett.83.4204.
 ^ Fedichkin, Leonid; Yanchenko, Maxim; Valiev, Kamil (2000). "Novel coherent quantum bit using spatial quantization levels in semiconductor quantum dot". Quantum Computers and Computing. 1: 58–76. arXiv:quantph/0006097. Bibcode:2000quant.ph..6097F. Archived from the original on 20110818.
 ^ Bertoni, A.; Bordone, P.; Brunetti, R.; Jacoboni, C.; Reggiani, S. (20000619). "Quantum Logic Gates based on Coherent Electron Transport in Quantum Wires". Physical Review Letters. 84 (25): 5912–5915. Bibcode:2000PhRvL..84.5912B. doi:10.1103/PhysRevLett.84.5912. PMID 10991086.
 ^ Ionicioiu, Radu; Amaratunga, Gehan; Udrea, Florin (20010120). "Quantum Computation with Ballistic Electrons". International Journal of Modern Physics B. 15 (2): 125–133. arXiv:quantph/0011051. Bibcode:2001IJMPB..15..125I. doi:10.1142/s0217979201003521. ISSN 02179792.
 ^ Ramamoorthy, A.; Bird, J. P.; Reno, J. L. (2007). "Using splitgate structures to explore the implementation of a coupledelectronwaveguide qubit scheme". Journal of Physics: Condensed Matter. 19 (27): 276205. Bibcode:2007JPCM...19A6205R. doi:10.1088/09538984/19/27/276205. ISSN 09538984.
 ^ Leuenberger, MN; Loss, D (Apr 12, 2001). "Quantum computing in molecular magnets". Nature. 410 (6830): 789–93. arXiv:condmat/0011415. Bibcode:2001Natur.410..789L. doi:10.1038/35071024. PMID 11298441.
 ^ Knill, G. J.; Laflamme, R.; Milburn, G. J. (2001). "A scheme for efficient quantum computation with linear optics". Nature. 409 (6816): 46–52. Bibcode:2001Natur.409...46K. doi:10.1038/35051009. PMID 11343107.
 ^ Nizovtsev, A. P. (August 2005). "A quantum computer based on NV centers in diamond: Optically detected nutations of single electron and nuclear spins". Optics and Spectroscopy. 99 (2): 248–260. Bibcode:2005OptSp..99..233N. doi:10.1134/1.2034610.
 ^ Gruener, Wolfgang (20070601). "Research indicates diamonds could be key to quantum storage". Archived from the original on 20070604. Retrieved 20070604.
 ^ Neumann, P.; et al. (June 6, 2008). "Multipartite Entanglement Among Single Spins in Diamond". Science. 320 (5881): 1326–1329. Bibcode:2008Sci...320.1326N. doi:10.1126/science.1157233. PMID 18535240.
 ^ Millman, Rene (20070803). "Trapped atoms could advance quantum computing". ITPro. Archived from the original on 20070927. Retrieved 20070726.
 ^ Ohlsson, N.; Mohan, R. K.; Kröll, S. (January 1, 2002). "Quantum computer hardware based on rareearthiondoped inorganic crystals". Opt. Commun. 201 (1–3): 71–77. Bibcode:2002OptCo.201...71O. doi:10.1016/S00304018(01)016662.
 ^ Longdell, J. J.; Sellars, M. J.; Manson, N. B. (September 23, 2004). "Demonstration of conditional quantum phase shift between ions in a solid". Phys. Rev. Lett. 93 (13): 130503. arXiv:quantph/0404083. Bibcode:2004PhRvL..93m0503L. doi:10.1103/PhysRevLett.93.130503. PMID 15524694.
 ^ Náfrádi, Bálint; Choucair, Mohammad; Dinse, KlausPeter; Forró, László (July 18, 2016). "Room Temperature manipulation of long lifetime spins in metalliclike carbon nanospheres". Nature Communications. 7: 12232. arXiv:1611.07690. Bibcode:2016NatCo...712232N. doi:10.1038/ncomms12232. PMC 4960311. PMID 27426851.
 ^ Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/bf01011339.
 ^ Manin, Yu I (1980). "Vychislimoe i nevychislimoe" [Computable and Noncomputable]. Sov.Radio (in Russian). pp. 13–15. Archived from the original on May 10, 2013. Retrieved October 20, 2017.
 ^ Gil, Dario (May 4, 2016). "The Dawn of Quantum Computing is Upon Us". Retrieved May 4, 2016.
 ^ Bennett,, C. H. (29 March 1993). "Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels" (PDF). Physical Review Letters. 70 (13): 1895–1899. Bibcode:1993PhRvL..70.1895B. doi:10.1103/PhysRevLett.70.1895. PMID 10053414.
 ^ Ekert, Artur; Josza, Richard (1996). "Quantum computation and Shor's factoring algorithm". Rev. Mod. Phys. 68 (3): 733–753. doi:10.1103/RevModPhys.68.733.
 ^ Vandersypen, Lieven M. K.; Steffen, Matthias; Breyta, Gregory; Yannoni, Costantino S.; Sherwood, Mark H.; Chuang, Isaac L. (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance". Nature. 414 (6866): 883–7. arXiv:quantph/0112176. Bibcode:2001Natur.414..883V. CiteSeerX 10.1.1.251.8799. doi:10.1038/414883a. PMID 11780055.
 ^ "UM develops scalable and massproducible quantum computer chip". University of Michigan. 20051212. Retrieved 20061117.
 ^ DiCarlo, L.; Chow, J. M.; Gambetta, J. M.; Bishop, Lev S.; Johnson, B. R.; Schuster, D. I.; Majer, J.; Blais, A.; Frunzio, L.; S. M. Girvin; R. J. Schoelkopf (9 July 2009). "Demonstration of twoqubit algorithms with a superconducting quantum processor" (PDF). Nature. 460 (7252): 240–4. arXiv:0903.2030. Bibcode:2009Natur.460..240D. doi:10.1038/nature08121. PMID 19561592. Retrieved 20090702.
 ^ "Scientists Create First Electronic Quantum Processor". Yale University. 20090702. Archived from the original on 20100611. Retrieved 20090702.
 ^ "Codebreaking quantum algorithm runs on a silicon chip". New Scientist. 20090904. Retrieved 20091014.
 ^ "New Trends in Quantum Computation". Simons Conference on New Trends in Quantum Computation 2010: Program. C.N. Yang Institute for Theoretical Physics.
 ^ "Quantum Information Processing". Springer.com. Retrieved on 20110519.
 ^ Bhattacharjee, Pijush Kanti (2010). "Digital Combinational Circuits Design by QCA Gates" (PDF). International Journal of Computer and Electrical Engineering. 2 (1): 67–72.
 ^ Bhattacharjee, Pijush Kanti (2010). "Digital Combinational Circuits Design with the Help of Symmetric Functions Considering Heat Dissipation by Each QCA Gate" (PDF). International Journal of Computer and Electrical Engineering. 2 (4): 666–672.
 ^ "Quantum teleporter breakthrough". University of New South Wales. 20110415. Archived from the original on 20110418.
 ^ Lai, Richard (20110418). "First light wave quantum teleportation achieved, opens door to ultra fast data transmission". Engadget.
 ^ ^{a} ^{b} "DWave Systems sells its first Quantum Computing System to Lockheed Martin Corporation". DWave. 20110525. Retrieved 20110530.
 ^ "Operational Quantum Computing Center Established at USC". University of Southern California. 20111029. Retrieved 20111206.
 ^ Johnson, M. W.; Amin, M. H. S.; Gildert, S.; Lanting, T.; Hamze, F.; Dickson, N.; Harris, R.; Berkley, A. J.; Johansson, J.; Bunyk, P.; Chapple, E. M.; Enderud, C.; Hilton, J. P.; Karimi, K.; Ladizinsky, E.; Ladizinsky, N.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Truncik, C. J. S.; Uchaikin, S.; Wang, J.; Wilson, B.; Rose, G. (12 May 2011). "Quantum annealing with manufactured spins". Nature. 473 (7346): 194–198. Bibcode:2011Natur.473..194J. doi:10.1038/nature10012. PMID 21562559.
 ^ Simonite, Tom (October 4, 2012). "The CIA and Jeff Bezos Bet on Quantum Computing". Technology Review.
 ^ Seung Woo Shin; Smith, Graeme; Smolin, John A.; Vazirani, Umesh (20140502). "How "Quantum" is the DWave Machine?". arXiv:1401.7087 [quantph].
 ^ Boixo, Sergio; Rønnow, Troels F.; Isakov, Sergei V.; Wang, Zhihui; Wecker, David; Lidar, Daniel A.; Martinis, John M.; Troyer, Matthias (2014). "Quantum Annealing With More Than 100 Qbits". Nature Physics. 10 (3): 218–224. arXiv:1304.4595. Bibcode:2014NatPh..10..218B. doi:10.1038/nphys2900.
 ^ Albash, Tameem; Rønnow, Troels F.; Troyer, Matthias; Lidar, Daniel A. (20140912). "Reexamining classical and quantum models for the DWave One processor". The European Physical Journal Special Topics. 224 (111): 111–129. arXiv:1409.3827. Bibcode:2015EPJST.224..111A. doi:10.1140/epjst/e2015023460.
 ^ Lanting, T.; Przybysz, A. J.; Smirnov, A. Yu.; Spedalieri, F. M.; Amin, M. H.; Berkley, A. J.; Harris, R.; Altomare, F.; Boixo, S.; Bunyk, P.; Dickson, N.; Enderud, C.; Hilton, J. P.; Hoskinson, E.; Johnson, M. W.; Ladizinsky, E.; Ladizinsky, N.; Neufeld, R.; Oh, T.; Perminov, I.; Rich, C.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wilson, A. B.; Rose, G. (20140529). "Entanglement in a quantum annealing processor". Physical Review X. 4 (2): 021041. arXiv:1401.3500. Bibcode:2014PhRvX...4b1041L. doi:10.1103/PhysRevX.4.021041.
 ^ Lopez, Enrique Martin; Laing, Anthony; Lawson, Thomas; Alvarez, Roberto; Zhou, XiaoQi; O'Brien, Jeremy L. (2012). "Implementation of an iterative quantum order finding algorithm". Nature Photonics. 6 (11): 773–776. arXiv:1111.4147. Bibcode:2012NaPho...6..773M. doi:10.1038/nphoton.2012.259.
 ^ Mariantoni, Matteo; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, Radoslaw C.; Chen, Y.; Lenander, M.; Lucero, Erik; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yin, Y.; Zhao, J.; Korotkov, A. N.; Cleland, A. N.; Martinis, John M. (2011). "Quantum computer with Von Neumann architecture". Science. 334 (6052): 61–65. arXiv:1109.3743. Bibcode:2011Sci...334...61M. doi:10.1126/science.1208517. PMID 21885732.
 ^ Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng (2011). "Quantum Factorization of 143 on a DipolarCoupling NMR system". Physical Review Letters. 109 (26): 269902. arXiv:1111.3726. Bibcode:2012PhRvL.109z9902X. doi:10.1103/PhysRevLett.109.269902.
 ^ "IBM Says It's 'On the Cusp' of Building a Quantum Computer". PCMAG. Retrieved 20141026.
 ^ "Quantum computer built inside diamond". Futurity. 20120409. Retrieved 20141026.
 ^ "Australian engineers write quantum computer 'qubit' in global breakthrough". The Australian. Retrieved 20121003.
 ^ "Breakthrough in bid to create first quantum computer". University of New South Wales. 20120919. Retrieved 20121003.
 ^ Frank, Adam (October 14, 2012). "Cracking the Quantum Safe". The New York Times. Retrieved 20121014.
 ^ Overbye, Dennis (October 9, 2012). "A Nobel for Teasing Out the Secret Life of Atoms". The New York Times. Retrieved 20121014.
 ^ "First Teleportation from One Macroscopic Object to Another: The Physics arXiv Blog". MIT Technology Review. November 15, 2012. Retrieved 20121117.
 ^ Bao, XiaoHui; Xu, XiaoFan; Li, CheMing; Yuan, ZhenSheng; Lu, ChaoYang; Pan, Jianwei (November 13, 2012). "Quantum teleportation between remote atomicensemble quantum memories". Proceedings of the National Academy of Sciences. 109 (50): 20347–20351. arXiv:1211.2892. Bibcode:2012PNAS..10920347B. doi:10.1073/pnas.1207329109. PMC 3528515. PMID 23144222.
 ^ "1QBit Founded". 1QBit.com. Retrieved 20140622.
 ^ "1QBit Research". 1QBit.com. Retrieved 20140622.

^ ^{a} ^{b} "Launching the Quantum Artificial Intelligence Lab". [email protected] Blog. Retrieved 20130516.
We’ve already developed some quantum machine learning algorithms. One produces very compact, efficient recognizers  very useful when you’re short on power, as on a mobile device. Another can handle highly polluted training data, where a high percentage of the examples are mislabeled, as they often are in the real world. And we’ve learned some useful principles: e.g., you get the best results not with pure quantum computing, but by mixing quantum and classical computing.
 ^ "NSA seeks to build quantum computer that could crack most types of encryption". Washington Post. January 2, 2014.
 ^ Ambainis, Andris; Wang, Z.; Job, J.; Boixo, S.; Isakov, S. V.; Wecker, D.; Martinis, J. M.; Lidar, D. A.; Troyer, M. (2014). "Defining and detecting quantum speedup". Science. 345 (6195): 420–424. arXiv:1401.2910v1. doi:10.1126/science.1252319. PMID 25061205.
 ^ "Quantum Chaos: After a Failed Speed Test, the DWave Debate Continues". Scientific American. 20140619.
 ^ Gaudin, Sharon (23 October 2014). "Researchers use silicon to push quantum computing toward reality". Computer World.
 ^ "IBM achieves critical steps to first quantum computer". www03.ibm.com. 29 April 2015.
 ^ Condliffe, Jamie. "World's First Silicon Quantum Logic Gate Brings Quantum Computing One Step Closer".
 ^ "3Q: Scott Aaronson on Google's new quantumcomputing paper". MIT News. Retrieved 20160105.
 ^ Ambainis, Andris (2015). "Benchmarking a quantum annealing processor with the timetotarget metric". arXiv:1508.05087 [quantph].
 ^ "IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation". May 4, 2016. Retrieved May 4, 2016.
 ^ MacDonald, Fiona. "Researchers have built the first reprogrammable quantum computer". ScienceAlert. Retrieved 8 August 2016.
 ^ "A new Type of Quantum Bit". www.unibas.ch.
 ^ "IBM Builds Its Most Powerful Universal Quantum Computing Processors". 17 May 2017. Retrieved 17 May 2017.
 ^ Reynolds, Matt. "Quantum simulator with 51 qubits is largest ever". New Scientist. Retrieved 23 July 2017.
 ^ "IBM Pioneers New Approach to Simulate Chemistry with Quantum Computing". 13 September 2017. Retrieved 13 September 2017.
 ^ Pednault, Edwin; Gunnels, John A; Nannicini, Giacomo; Horesh, Lior; Magerlein, Thomas; Solomonik, Edgar; Wisnieff, Robert (16 October 2017). "Breaking the 49Qubit Barrier in the Simulation of Quantum Circuits". arXiv:1710.05867 [quantph].
 ^ "Key component for quantum computing invented: University of Sydney team develop microcircuit based on Nobel Prize research".
 ^ "IBM Announces Collaboration with Leading Fortune 500 Companies, Academic Institutions and National Research Labs to Accelerate Quantum Computing". 14 November 2017. Retrieved 14 December 2017.
 ^ Microsoft Mechanics (11 December 2017). "Microsoft Quantum Development Kit: Introduction and stepbystep demo" – via YouTube.
 ^ Temperton, James (26 January 2017). "Got a spare $15 million? Why not buy your very own DWave quantum computer". Wired. Retrieved 13 May 2018.
 ^ Will Knight (20171110). "IBM Raises the Bar with a 50Qubit Quantum Computer". MIT Technology Review. Retrieved 20171213.
 ^ Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers. Retrieved July 5, 2018.
 ^ Susan Curtis (20180306). "Google aims for quantum supremacy". PhysicsWorld. Retrieved 20180912.
 ^ Tom Simonite (20180519). "Google, Alibaba Spar Over Timeline for "Quantum Supremacy"". Wired. Retrieved 20180912.
 ^ Hignett, Katherine (16 February 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek. Retrieved 17 February 2018.
 ^ Liang, QiYu; et al. (16 February 2018). "Observation of threephoton bound states in a quantum nonlinear medium". Science. 359 (6377): 783–786. arXiv:1709.01478. Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMID 29449489. Retrieved 17 February 2018.
 ^ Giles, Martin (February 15, 2018). "Oldfashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. Retrieved July 5, 2018.
 ^ Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. Retrieved July 12, 2018.
 ^ "Worldfirst quantum computer simulation of chemical bonds using trapped ions: Quantum chemistry expected to be one of the first applications of fullscale quantum computers". ScienceDaily. Retrieved 20180813.
 ^ Nielsen, p. 42
 ^ Nielsen, p. 41
 ^ ^{a} ^{b} Bernstein, Ethan; Vazirani, Umesh (1997). "Quantum Complexity Theory". SIAM Journal on Computing. 26 (5): 1411–1473. CiteSeerX 10.1.1.144.7852. doi:10.1137/S0097539796300921.
 ^ Ozhigov, Yuri (1999). "Quantum Computers Speed Up Classical with Probability Zero". Chaos, Solitons & Fractals. 10 (10): 1707–1714. arXiv:quantph/9803064. Bibcode:1998quant.ph..3064O. doi:10.1016/S09600779(98)002264.
 ^ Ozhigov, Yuri (1999). "Lower Bounds of Quantum Search for Extreme Point". Proceedings of the London Royal Society. A455 (1986): 2165–2172. arXiv:quantph/9806001. Bibcode:1999RSPSA.455.2165O. doi:10.1098/rspa.1999.0397.
 ^ Aaronson, Scott. "Quantum Computing and Hidden Variables" (PDF).
 ^ Nielsen, p. 126
 ^ Scott Aaronson (2005). "NPcomplete Problems and Physical Reality". ACM SIGACT News, March. 2005. arXiv:quantph/0502072. Bibcode:2005quant.ph..2072A. See section 7 "Quantum Gravity": "[…] to anyone who wants a test or benchmark for a favorite quantum gravity theory,[author's footnote: That is, one without all the bother of making numerical predictions and comparing them to observation] let me humbly propose the following: can you define Quantum Gravity PolynomialTime? […] until we can say what it means for a 'user' to specify an 'input' and ‘later' receive an 'output'—there is no such thing as computation, not even theoretically." (emphasis in original)
Further reading
 Nielsen, Michael; Chuang, Isaac (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. ISBN 9780521635035. OCLC 174527496.
 Dibyendu Chatterjee; Arijit Roy (2015). "A transmonbased quantum halfadder scheme". Progress of Theoretical and Experimental Physics. 2015 (9): 093A02(16pages). Bibcode:2015PTEP.2015i3A02C. doi:10.1093/ptep/ptv122.
 Abbot, Derek; Doering, Charles R.; Caves, Carlton M.; Lidar, Daniel M.; Brandt, Howard E.; Hamilton, Alexander R.; Ferry, David K.; GeaBanacloche, Julio; Bezrukov, Sergey M.; Kish, Laszlo B. (2003). "Dreams versus Reality: Plenary Debate Session on Quantum Computing". Quantum Information Processing. 2 (6): 449–472. arXiv:quantph/0310130. doi:10.1023/B:QINP.0000042203.24782.9a. hdl:2027.42/45526.
 Ambainis, Andris (2000). "The Physical Implementation of Quantum Computation". Fortschritte der Physik. 48 (9–11): 771–783. arXiv:quantph/0002077. doi:10.1002/15213978(200009)48:9/11<771::AIDPROP771>3.0.CO;2E.
 DiVincenzo, David P. (1995). "Quantum Computation". Science. 270 (5234): 255–261. Bibcode:1995Sci...270..255D. CiteSeerX 10.1.1.242.2165. doi:10.1126/science.270.5234.255. Table 1 lists switching and dephasing times for various systems.
 Feynman, Richard (1982). "Simulating physics with computers". International Journal of Theoretical Physics. 21 (6–7): 467–488. Bibcode:1982IJTP...21..467F. CiteSeerX 10.1.1.45.9310. doi:10.1007/BF02650179.
 Jaeger, Gregg (2006). Quantum Information: An Overview. Berlin: Springer. ISBN 9780387357256. OCLC 255569451.
 Singer, Stephanie Frank (2005). Linearity, Symmetry, and Prediction in the Hydrogen Atom. New York: Springer. ISBN 9780387246376. OCLC 253709076.
 Benenti, Giuliano (2004). Principles of Quantum Computation and Information Volume 1. New Jersey: World Scientific. ISBN 9789812388308. OCLC 179950736.
 Lomonaco, Sam. Four Lectures on Quantum Computing given at Oxford University in July 2006
 Ambainis, Andris (1998). "Quantum computation with linear optics". arXiv:quantph/9806048.
 Stolze, Joachim; Suter, Dieter (2004). Quantum Computing. WileyVCH. ISBN 9783527404384.
 Mitchell, Ian (1998). "Computing Power into the 21st Century: Moore's Law and Beyond".
 Landauer, Rolf (1961). "Irreversibility and heat generation in the computing process" (PDF).
 Moore, Gordon E. (1965). "Cramming more components onto integrated circuits". Electronics Magazine.
 Keyes, R. W. (1988). "Miniaturization of electronics and its limits". IBM Journal of Research and Development.
 Nielsen, M. A.; Knill, E.; Laflamme, R. "Complete Quantum Teleportation By Nuclear Magnetic Resonance".
 Vandersypen, Lieven M.K.; Yannoni, Constantino S.; Chuang, Isaac L. (2000). Liquid state NMR Quantum Computing.
 Hiroshi, Imai; Masahito, Hayashi (2006). Quantum Computation and Information. Berlin: Springer. ISBN 9783540331322.
 Berthiaume, Andre (1997). "Quantum Computation".
 Simon, Daniel R. (1994). "On the Power of Quantum Computation". Institute of Electrical and Electronic Engineers Computer Society Press.
 "Seminar Post Quantum Cryptology". Chair for communication security at the RuhrUniversity Bochum. ^{[permanent dead link]}
 Sanders, Laura (2009). "First programmable quantum computer created".
 "New trends in quantum computation".
 Wichert, Andreas (2014). Principles of Quantum Artificial Intelligence. World Scientific Publishing Co. ISBN 9789814566742.
 Akama, Seiki (2014). Elements of Quantum Computing: History, Theories and Engineering Applications. Springer International Publishing. ISBN 9783319082844.
External links
Wikimedia Commons has media related to Quantum computer. 
 for video explanation click here
 Stanford Encyclopedia of Philosophy: "Quantum Computing" by Amit Hagar.
 Ambainis, Andris (2013). "Quantum Annealing and Computation: A Brief Documentary Note". arXiv:1310.1339 [physics.histph].
 Maryland University Laboratory for Physical Sciences: conducts researches for the quantum computerbased project led by the NSA, named 'Penetrating Hard Target'.
 Visualized history of quantum computing
 Ambainis, Andris; Chakrabarti, Bikas K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv:0801.2193. doi:10.1103/RevModPhys.80.1061.
 Hazewinkel, Michiel, ed. (2001) [1994], "Quantum computation, theory of", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 9781556080104
 Patenting in the field of quantum computing
 [1]
 Lectures
 for video explanation click here
 Quantum computing for the determined – 22 video lectures by Michael Nielsen
 Video Lectures by David Deutsch
 Lectures at the Institut Henri Poincaré (slides and videos)
 Online lecture on An Introduction to Quantum Computing, Edward Gerjuoy (2008)
 Quantum Computing research by Mikko Möttönen at Aalto University (video) on YouTube