Pyrene

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Pyrene
Structural formula of pyrene
Ball-and-stick model of the pyrene molecule
Names
Preferred IUPAC name
Pyrene
Other names
Benzo[def]phenanthrene
Identifiers
  • 129-00-0 ☑Y
3D model (JSmol)
  • Interactive image
1307225
ChEBI
  • CHEBI:39106 ☑Y
ChEMBL
  • ChEMBL279564 ☑Y
ChemSpider
  • 29153 ☑Y
ECHA InfoCard 100.004.481
84203
KEGG
  • C14335 ☑Y
PubChem CID
  • 31423
RTECS number UR2450000
Properties
C16H10
Molar mass 202.26 g·mol−1
Appearance colorless solid

(yellow impurities are often found at trace levels in many samples).

Density 1.271 g/mL
Melting point 145 to 148 °C (293 to 298 °F; 418 to 421 K)
Boiling point 404 °C (759 °F; 677 K)
0.135 mg/L
-147.9·10−6 cm3/mol
Hazards
Main hazards irritant
R-phrases (outdated) 36/37/38-45-53
S-phrases (outdated) 24/25-26-36
NFPA 704
Flammability code 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g., canola oil Health code 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g., chloroform Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
1
2
0
Flash point non-flammable
Related compounds
Related PAHs
benzopyrene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is C
16
H
10
. This colorless solid is the smallest peri-fused PAH (one where the rings are fused through more than one face). Pyrene forms during incomplete combustion of organic compounds.

Occurrence and reactivity

Pyrene was first isolated from coal tar, where it occurs up to 2% by weight. As a peri-fused PAH, pyrene is much more resonance-stabilized than its five-member-ring containing isomer fluoranthene. Therefore, it is produced in a wide range of combustion conditions. For example, automobiles produce about 1 μg/km.[1]

Oxidation with chromate affords perinaphthenone and then naphthalene-1,4,5,8-tetracarboxylic acid. It undergoes a series of hydrogenation reactions, and it is susceptible to halogenation, Diels-Alder additions, and nitration, all with varying degrees of selectivity.[1] Bromination occurs at one of the 3-positions.[2]

Applications

STM image of self-assembled Br4Py molecules on Au(111) surface (top) and its model (bottom; pink spheres are Br atoms).[3]

Pyrene and its derivatives are used commercially to make dyes and dye precursors, for example pyranine and naphthalene-1,4,5,8-tetracarboxylic acid. Its derivatives are also valuable molecular probes via fluorescence spectroscopy, having a high quantum yield and lifetime (0.65 and 410 nanoseconds, respectively, in ethanol at 293 K). Its fluorescence emission spectrum is very sensitive to solvent polarity, so pyrene has been used as a probe to determine solvent environments. This is due to its excited state having a different, non-planar structure than the ground state. Certain emission bands are unaffected, but others vary in intensity due to the strength of interaction with a solvent.

Safety

Diagram showing the numbering and ring fusion locations of pyrene according to IUPAC nomenclature of organic chemistry.

Although it is not as problematic as benzopyrene, animal studies have shown pyrene is toxic to the kidneys and liver. It is now known that pyrene affects several living functions in fish and algae.[4][5][6][7]

Experiments in pigs show that urinary 1-hydroxypyrene is a metabolite of pyrene, when given orally.[8]

See also

References

  1. ^ a b Senkan, Selim and Castaldi, Marco (2003) "Combustion" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim.
  2. ^ Gumprecht, W. H. (1968) "3-Bromopyrene" Org. Synth., vol. 48, p. 30. doi:10.15227/orgsyn.048.0030
  3. ^ Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong; Stöhr, Meike (2014). "Self-assembly of pyrene derivatives on Au(111): Substituent effects on intermolecular interactions". Chem. Commun. 50 (91): 14089. doi:10.1039/C4CC02753A.
  4. ^ Oliveira, M.; Ribeiro, A.; Hylland, K.; Guilhermino, L. "Single and combined effects of microplastics and pyrene on juveniles (0+ group) of the common goby Pomatoschistus microps (Teleostei, Gobiidae)". Ecological Indicators. 34: 641–647. doi:10.1016/j.ecolind.2013.06.019.
  5. ^ Oliveira, M.; Gravato, C.; Guilhermino, L. "Acute toxic effects of pyrene on Pomatoschistus microps (Teleostei, Gobiidae): Mortality, biomarkers and swimming performance". Ecological Indicators. 19: 206–214. doi:10.1016/j.ecolind.2011.08.006.
  6. ^ Oliveira, M.; Ribeiro, A.; Guilhermino, L. "Effects of exposure to microplastics and PAHs on microalgae Rhodomonas baltica and Tetraselmis chuii". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 163: S19–S20. doi:10.1016/j.cbpa.2012.05.062.
  7. ^ Oliveira, M.; Ribeiro, A.; Guilhermino, L. "Effects of short-term exposure to microplastics and pyrene on Pomatoschistus microps (Teleostei, Gobiidae)". Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 163. doi:10.1016/j.cbpa.2012.05.063.
  8. ^ Keimig, S. D.; Kirby, K. W.; Morgan, D. P.; Keiser, J. E.; Hubert, T. D. (1983). "Identification of 1-hydroxypyrene as a major metabolite of pyrene in pig urine". Xenobiotica. 13 (7): 415. doi:10.3109/00498258309052279. PMID 6659544.

Further reading

  • Birks, J. B. (1969). Photophysics of Aromatic Molecules. London: Wiley.
  • Valeur, B. (2002). Molecular Fluorescence: Principles and Applications. New York: Wiley-VCH.
  • Birks, J.B. (1975). Eximers. london: Reports on Progress in Physics.
  • Fetzer, J. C. (2000). The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons. New York: Wiley.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Pyrene&oldid=864287425"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Pyrene
This page is based on the copyrighted Wikipedia article "Pyrene"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA