Portal:Physical chemistry

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Physical chemistry

Physical Chemistry is the study of macroscopic, atomic, subatomic, and particulate phenomena in chemical systems in terms of the principles, practices, and concepts of physics such as motion, energy, force, time, thermodynamics, quantum chemistry, statistical mechanics, analytical dynamics and chemical equilibrium.

Physical chemistry, in contrast to chemical physics, is predominantly (but not always) a macroscopic or supra-molecular science, as the majority of the principles on which it was founded relate to the bulk rather than the molecular/atomic structure alone (for example, chemical equilibrium and colloids).

Some of the relationships that physical chemistry strives to resolve include the effects of:

  1. Intermolecular forces that act upon the physical properties of materials (plasticity, tensile strength, surface tension in liquids).
  2. Reaction kinetics on the rate of a reaction.
  3. The identity of ions and the electrical conductivity of materials.
  4. Surface science and electrochemistry of cell membranes.
  5. Interaction of one body with another in terms of quantities of heat and work called thermodynamics.
  6. Transfer of heat between a chemical system and its surroundings during change of phase or chemical reaction taking place called thermochemistry
  7. Study of colligative properties of number of species present in solution.
  8. Number of phases, number of components and degree of freedom (or variance) can be correlated with one another with help of phase rule.
  9. Reactions of electrochemical cells.

Selected article

In a chemical process, chemical equilibrium is the state in which the chemical activities or concentrations of the reactants and products have no net change over time. Usually, this would be the state that results when the forward chemical process proceeds at the same rate as their reverse reaction. The reaction rates of the forward and reverse reactions are generally not zero but, being equal, there are no net changes in any of the reactant or product concentrations. This process is known as dynamic equilibrium .

Selected image

Typical thermodynamic system - heat moves from hot (boiler) to cold (condenser), (both not shown) and work is extracted, in this case by a series of pistons.

Typical thermodynamic system - heat moves from hot (boiler) to cold (condenser), (both not shown) and work is extracted, in this case by a series of pistons.

Selected Biography

WikiProjects

Physical chemistry Topics

Quantum chemistry

Polymer chemistry

Thermochemistry

Thermodynamics

  • Engineering Thermodynamics
  • Entropy for Beginners

Phases of matter and phase transition

Electrochemistry


Related portals

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database

Retrieved from "https://en.wikipedia.org/w/index.php?title=Portal:Physical_chemistry&oldid=858403247"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Portal:Physical_chemistry
This page is based on the copyrighted Wikipedia article "Portal:Physical chemistry"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA