Portal:Mathematics
The Mathematics Portal
Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.
Selected article 
Game theory is a branch of mathematics that is often used in the context of economics. It studies strategic interactions between agents. In strategic games, agents choose strategies which will maximize their return, given the strategies the other agents choose. The essential feature is that it provides a formal modelling approach to social situations in which decision makers interact with other agents. Game theory extends the simpler optimisation approach developed in neoclassical economics.
The field of game theory came into being with the 1944 classic Theory of Games and Economic Behavior by John von Neumann and Oskar Morgenstern. A major center for the development of game theory was RAND Corporation where it helped to define nuclear strategies.
Game theory has played, and continues to play a large role in the social sciences, and is now also used in many diverse academic fields. Beginning in the 1970s, game theory has been applied to animal behaviour, including evolutionary theory. Many games, especially the prisoner's dilemma, are used to illustrate ideas in political science and ethics. Game theory has recently drawn attention from computer scientists because of its use in artificial intelligence and cybernetics.
View all selected articles  Read More... 
Selected image 
The Lorenz attractor is an iconic example of a strange attractor in chaos theory. This threedimensional fractal structure, resembling a butterfly or figure eight, reflects the longterm behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of liquid or gas) uniformly heated from below and cooled from above. To be more specific, the figure is set in a threedimensional coordinate system whose axes measure the rate of convection in the layer (x), the horizontal temperature variation (y), and the vertical temperature variation (z). As these quantities change over time, a path is traced out within the coordinate system reflecting a particular solution to the differential equations. Lorenz's analysis revealed that while all solutions are completely deterministic, some choices of input parameters and initial conditions result in solutions showing complex, nonrepeating patterns that are highly dependent on the exact values chosen. As stated by Lorenz in his 1963 paper Deterministic Nonperiodic Flow: "Two states differing by imperceptible amounts may eventually evolve into two considerably different states". He later coined the term "butterfly effect" to describe the phenomenon. One implication is that computing such chaotic solutions to the Lorenz system (i.e., with a computer program) to arbitrary precision is not possible, as any realworld computer will have a limitation on the precision with which it can represent numerical values. The particular solution plotted in this animation is based on the parameter values used by Lorenz (σ = 10, ρ = 28, and β = 8/3, constants reflecting certain physical attributes of the fluid). Note that the animation repeatedly shows one solution plotted over a specific period of time; as previously mentioned, the true solution never exactly retraces itself. Not all solutions are chaotic, however. Some choices of parameter values result in solutions that tend toward equilibrium at a fixed point (as seen, for example, in this image). Initially developed to describe atmospheric convection, the Lorenz equations also arise in simplified models for lasers, electrical generators and motors, and chemical reactions.
Did you know 
 ...that every natural number can be written as the sum of four squares?
 ...that the set of rational numbers is equal in size to the set of integers; that is, they can be put in onetoone correspondence?
 ...that there are precisely six convex regular polytopes in four dimensions? These are analogs of the five Platonic solids known to the ancient Greeks.
 ...that it is unknown whether π and e are algebraically independent?
 ...that a nonconvex polygon with three convex vertices is called a pseudotriangle?
 ...that it is possible for a three dimensional figure to have a finite volume but infinite surface area? An example of this is Gabriel's Horn.
WikiProjects
The Mathematics WikiProject is the center for mathematicsrelated editing on Wikipedia. Join the discussion on the project's talk page.
Project pages
Essays
Subprojects
Related projects
Things you can do
Subcategories
Algebra  Arithmetic  Analysis  Complex analysis  Applied mathematics  Calculus  Category theory  Chaos theory  Combinatorics  Dynamic systems  Fractals  Game theory  Geometry  Algebraic geometry  Graph theory  Group theory  Linear algebra  Mathematical logic  Model theory  Multidimensional geometry  Number theory  Numerical analysis  Optimization  Order theory  Probability and statistics  Set theory  Statistics  Topology  Algebraic topology  Trigonometry  Linear programming
Mathematics (books)  History of mathematics  Mathematicians  Awards  Education  Literature  Notation  Organizations  Theorems  Proofs  Unsolved problems
Topics in mathematics
General  Foundations  Number theory  Discrete mathematics 



Algebra  Analysis  Geometry and topology  Applied mathematics 
Index of mathematics articles
ARTICLE INDEX:  A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9) 
MATHEMATICIANS:  A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Related portals
In other Wikimedia projects