Before the featured portal process ceased in 2017, this had been designated as a featured portal.
Page semi-protected

Portal:Mathematics

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The Mathematics Portal


Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

Refresh with new selections below (purge)

Selected article


6n-graf.svg
A labeled graph on 6 vertices and 7 edges
Image credit: User:Booyabazooka

Informally speaking, a graph is a set of objects called points, nodes, or vertices connected by links called lines or edges. In a proper graph, which is by default undirected, a line from point A to point B is considered to be the same thing as a line from point B to point A. In a digraph, short for directed graph, the two directions are counted as being distinct arcs or directed edges. Typically, a graph is depicted in diagrammatic form as a set of dots (for the points, vertices, or nodes), joined by curves (for the lines or edges). Graphs have applications in both mathematics and computer science, and form the basic object of study in graph theory.

Applications of graph theory are generally concerned with labeled graphs and various specializations of these. Many problems of practical interest can be represented by graphs. The link structure of a website could be represented by a directed graph: the vertices are the web pages available at the website and a directed edge from page A to page B exists if and only if A contains a link to B. A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with weights, or weighted graphs, are used to represent structures in which pairwise connections have some numerical values. For example if a graph represents a road network, the weights could represent the length of each road. A digraph with weighted edges in the context of graph theory is called a network. Networks have many uses in the practical side of graph theory, network analysis (for example, to model and analyze traffic networks).

View all selected articles Read More...

Selected image

animation of the classic "butterfly-shaped" Lorenz attractor seen from three different perspectives
Credit: Wikimol

The Lorenz attractor is an iconic example of a strange attractor in chaos theory. This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of liquid or gas) uniformly heated from below and cooled from above. To be more specific, the figure is set in a three-dimensional coordinate system whose axes measure the rate of convection in the layer (x), the horizontal temperature variation (y), and the vertical temperature variation (z). As these quantities change over time, a path is traced out within the coordinate system reflecting a particular solution to the differential equations. Lorenz's analysis revealed that while all solutions are completely deterministic, some choices of input parameters and initial conditions result in solutions showing complex, non-repeating patterns that are highly dependent on the exact values chosen. As stated by Lorenz in his 1963 paper Deterministic Nonperiodic Flow: "Two states differing by imperceptible amounts may eventually evolve into two considerably different states". He later coined the term "butterfly effect" to describe the phenomenon. One implication is that computing such chaotic solutions to the Lorenz system (i.e., with a computer program) to arbitrary precision is not possible, as any real-world computer will have a limitation on the precision with which it can represent numerical values. The particular solution plotted in this animation is based on the parameter values used by Lorenz (σ = 10, ρ = 28, and β = 8/3, constants reflecting certain physical attributes of the fluid). Note that the animation repeatedly shows one solution plotted over a specific period of time; as previously mentioned, the true solution never exactly retraces itself. Not all solutions are chaotic, however. Some choices of parameter values result in solutions that tend toward equilibrium at a fixed point (as seen, for example, in this image). Initially developed to describe atmospheric convection, the Lorenz equations also arise in simplified models for lasers, electrical generators and motors, and chemical reactions.

Did you know…

Did you know...

                         

Showing 7 items out of 74

WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

WikiProjects

Project pages

Essays

Subprojects

Related projects

Things you can do

Subcategories


Topics in mathematics

General Foundations Number theory Discrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png


Algebra Analysis Geometry and topology Applied mathematics
Arithmetic symbols.svg
Source
Nuvola apps kpovmodeler.svg
Gcalctool.svg

Index of mathematics articles

ARTICLE INDEX: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9)
MATHEMATICIANS: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Related portals

Portal:Algebra Portal:Analysis Portal:Category theory Portal:Computer science Portal:Cryptography Portal:Discrete mathematics
Algebra Analysis Category
theory
Computer
science
Cryptography Discrete
mathematics
Portal:Logic Portal:Mathematics Portal:Number theory Portal:Physics Portal:Science Portal:Set theory Portal:Statistics
Logic Mathematics Number
theory
Physics Science Set theory Statistics


In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database

Retrieved from "https://en.wikipedia.org/w/index.php?title=Portal:Mathematics&oldid=871865515"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Portal:Mathematics
This page is based on the copyrighted Wikipedia article "Portal:Mathematics"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA