Portal:Geological history of Earth

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Introduction

Geologic time represented in a diagram called a geological clock, showing the relative lengths of the eons of Earth's history and noting major events

The geological history of Earth follows the major events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

Earth was initially molten due to extreme volcanism and frequent collisions with other bodies. Eventually, the outer layer of the planet cooled to form a solid crust when water began accumulating in the atmosphere. The Moon formed soon afterwards, possibly as a result of the impact of a planetoid with the Earth. Outgassing and volcanic activity produced the primordial atmosphere. Condensing water vapor, augmented by ice delivered from comets, produced the oceans.

Selected general articles

Need help?

Do you have a question about Geological history of Earth that you can't find the answer to?

Consider asking it at the Wikipedia reference desk.

Selected images

Subcategories

Table of geologic time

The following table summarizes the major events and characteristics of the periods of time making up the geologic time scale. This table is arranged with the most recent geologic periods at the top, and the most ancient at the bottom. The height of each table entry does not correspond to the duration of each subdivision of time.

The content of the table is based on the current official geologic time scale of the International Commission on Stratigraphy,[1] with the epoch names altered to the early/late format from lower/upper as recommended by the ICS when dealing with chronostratigraphy.[2]

A service providing a Resource Description Framework/Web Ontology Language representation of the timescale is available through the Commission for the Management and Application of Geoscience Information GeoSciML project as a service[3] and at a SPARQL end-point.[4][5]

Supereon Eon Era Period[a] Epoch Age[b] Major events Start, million years ago[b]
n/a[c] Phanerozoic Cenozoic[d] Quaternary Holocene Meghalayan 4.2 kiloyear event, Little Ice Age, increasing industrial CO2. 0.0042*
Northgrippian 8.2 kiloyear event, Holocene climatic optimum. Bronze Age. 0.0082*
Greenlandian Current interglacial begins. Sea level flooding of Doggerland and Sundaland. Sahara desert forms. Neolithic agriculture. 0.0117*
Pleistocene Late ('Tarantian') Eemian interglacial, Last glacial period, ending with Younger Dryas. Toba eruption. Megafauna extinction. 0.126
Middle ('Ionian', 'Chibanian') High amplitude 100 ka glacial cycles. Rise of Homo sapiens. 0.781
Calabrian Further cooling of the climate. Spread of Homo erectus. 1.8*
Gelasian Start of Quaternary glaciations. Rise of the Pleistocene megafauna and Homo habilis. 2.58*
Neogene Pliocene Piacenzian Greenland ice sheet develops.[8] Australopithecus common in East Africa.[9] 3.6*
Zanclean Zanclean flooding of the Mediterranean Basin. Cooling climate. Ardipithecus in Africa.[10] 5.333*
Miocene Messinian Messinian Event with hypersaline lakes in empty Mediterranean Basin. Moderate Icehouse climate, punctuated by ice ages and re-establishment of East Antarctic Ice Sheet; Gradual separation of human and chimpanzee ancestors. Sahelanthropus tchadensis in Africa. 7.246*
Tortonian 11.63*
Serravallian Warmer during Middle Miocene Climate Optimum.[11] Extinctions in Middle Miocene disruption. 13.82*
Langhian 15.97
Burdigalian Orogeny in Northern Hemisphere. Start of Kaikoura Orogeny forming Southern Alps in New Zealand. Widespread forests slowly draw in massive amounts of CO2, gradually lowering the level of atmospheric CO2 from 650 ppmv down to around 100 ppmv during the Miocene.[12][e] Modern mammal and bird families become recognizable. Horses and mastodons diverse. Grasses become ubiquitous. Ancestor of apes and humans.[13] 20.44
Aquitanian 23.03*
Paleogene Oligocene Chattian Grande Coupure extinction. Start of widespread Antarctic glaciation.[14] Rapid evolution and diversification of fauna, especially mammals. Major evolution and dispersal of modern types of flowering plants 28.1
Rupelian 33.9*
Eocene Priabonian Moderate, cooling climate. Archaic mammals (e.g. Creodonts, Condylarths, Uintatheres, etc.) flourish and continue to develop during the epoch. Appearance of several "modern" mammal families. Primitive whales diversify. First grasses. Reglaciation of Antarctica and formation of its ice cap; End of Laramide and Sevier Orogenies of the Rocky Mountains in North America. Orogeny of the Alps in Europe begins. Hellenic Orogeny begins in Greece and Aegean Sea. 37.8
Bartonian 41.2
Lutetian 47.8*
Ypresian Two transient events of global warming (PETM and ETM-2) and warming climate until the Eocene Climatic Optimum. The Azolla event decreased CO2 levels from 3500 ppm to 650 ppm, setting the stage for a long period of cooling.[12][e] Indian Subcontinent collides with Asia and starts Himalayan Orogeny. 56*
Paleocene Thanetian Starts with Chicxulub impact and the K-Pg extinction event. Climate tropical. Modern plants appear; Mammals diversify into a number of primitive lineages following the extinction of the non-avian dinosaurs. First large mammals (up to bear or small hippo size). Alpine orogeny in Europe and Asia begins. 59.2*
Selandian 61.6*
Danian 66*
Mesozoic Cretaceous Late Maastrichtian Flowering plants proliferate, along with new types of insects. More modern teleost fish begin to appear. Ammonoidea, belemnites, rudist bivalves, echinoids and sponges all common. Many new types of dinosaurs (e.g. Tyrannosaurs, Titanosaurs, duck bills, and horned dinosaurs) evolve on land, as do Eusuchia (modern crocodilians); and mosasaurs and modern sharks appear in the sea. Primitive birds gradually replace pterosaurs. Monotremes, marsupials and placental mammals appear. Break up of Gondwana. Beginning of Laramide and Sevier Orogenies of the Rocky Mountains. atmospheric CO2 close to present-day levels. 72.1 ± 0.2*
Campanian 83.6 ± 0.2
Santonian 86.3 ± 0.5*
Coniacian 89.8 ± 0.3
Turonian 93.9*
Cenomanian 100.5*
Early Albian ~113
Aptian ~125
Barremian ~129.4
Hauterivian ~132.9
Valanginian ~139.8
Berriasian ~145
Jurassic Late Tithonian Gymnosperms (especially conifers, Bennettitales and cycads) and ferns common. Many types of dinosaurs, such as sauropods, carnosaurs, and stegosaurs. Mammals common but small. First birds and lizards. Ichthyosaurs and plesiosaurs diverse. Bivalves, Ammonites and belemnites abundant. Sea urchins very common, along with crinoids, starfish, sponges, and terebratulid and rhynchonellid brachiopods. Breakup of Pangaea into Gondwana and Laurasia. Nevadan orogeny in North America. Rangitata and Cimmerian orogenies taper off. Atmospheric CO2 levels 3–4 times the present day levels (1200–1500 ppmv, compared to today's 400 ppmv[12][e]). 152.1 ± 0.9
Kimmeridgian 157.3 ± 1.0
Oxfordian 163.5 ± 1.0
Middle Callovian 166.1 ± 1.2
Bathonian 168.3 ± 1.3*
Bajocian 170.3 ± 1.4*
Aalenian 174.1 ± 1.0*
Early Toarcian 182.7 ± 0.7*
Pliensbachian 190.8 ± 1.0*
Sinemurian 199.3 ± 0.3*
Hettangian 201.3 ± 0.2*
Triassic Late Rhaetian Archosaurs dominant on land as dinosaurs, in the oceans as Ichthyosaurs and nothosaurs, and in the air as pterosaurs. Cynodonts become smaller and more mammal-like, while first mammals and crocodilia appear. Dicroidiumflora common on land. Many large aquatic temnospondyl amphibians. Ceratitic ammonoids extremely common. Modern corals and teleost fish appear, as do many modern insect clades. Andean Orogeny in South America. Cimmerian Orogeny in Asia. Rangitata Orogeny begins in New Zealand. Hunter-Bowen Orogeny in Northern Australia, Queensland and New South Wales ends, (c. 260–225 Ma) ~208.5
Norian ~227
Carnian ~237*
Middle Ladinian ~242*
Anisian 247.2
Early Olenekian 251.2
Induan 251.902 ± 0.06*
Paleozoic Permian Lopingian Changhsingian Landmasses unite into supercontinent Pangaea, creating the Appalachians. End of Permo-Carboniferous glaciation. Synapsid reptiles (pelycosaurs and therapsids) become plentiful, while parareptiles and temnospondyl amphibians remain common. In the mid-Permian, coal-age flora are replaced by cone-bearing gymnosperms (the first true seed plants) and by the first true mosses. Beetles and flies evolve. Marine life flourishes in warm shallow reefs; productid and spiriferid brachiopods, bivalves, forams, and ammonoids all abundant. Permian-Triassic extinction event occurs 251 Ma: 95% of life on Earth becomes extinct, including all trilobites, graptolites, and blastoids. Ouachita and Innuitian orogenies in North America. Uralian orogeny in Europe/Asia tapers off. Altaid orogeny in Asia. Hunter-Bowen Orogeny on Australian continent begins (c. 260–225 Ma), forming the MacDonnell Ranges. 254.14 ± 0.07*
Wuchiapingian 259.1 ± 0.4*
Guadalupian Capitanian 265.1 ± 0.4*
Wordian 268.8 ± 0.5*
Roadian 272.95 ± 0.5*
Cisuralian Kungurian 283.5 ± 0.6
Artinskian 290.1 ± 0.26
Sakmarian 295 ± 0.18
Asselian 298.9 ± 0.15*
Carbon-
iferous
[f]
Pennsylvanian Gzhelian Winged insects radiate suddenly; some (esp. Protodonata and Palaeodictyoptera) are quite large. Amphibians common and diverse. First reptiles and coal forests (scale trees, ferns, club trees, giant horsetails, Cordaites, etc.). Highest-ever atmospheric oxygen levels. Goniatites, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. Testate forams proliferate. Uralian orogeny in Europe and Asia. Variscan orogeny occurs towards middle and late Mississippian Periods. 303.7 ± 0.1
Kasimovian 307 ± 0.1
Moscovian 315.2 ± 0.2
Bashkirian 323.2 ± 0.4*
Mississippian Serpukhovian Large primitive trees, first land vertebrates, and amphibious sea-scorpions live amid coal-forming coastal swamps. Lobe-finned rhizodonts are dominant big fresh-water predators. In the oceans, early sharks are common and quite diverse; echinoderms (especially crinoids and blastoids) abundant. Corals, bryozoa, goniatites and brachiopods (Productida, Spiriferida, etc.) very common, but trilobites and nautiloids decline. Glaciation in East Gondwana. Tuhua Orogeny in New Zealand tapers off. 330.9 ± 0.2
Viséan 346.7 ± 0.4*
Tournaisian 358.9 ± 0.4*
Devonian Late Famennian First clubmosses, horsetails and ferns appear, as do the first seed-bearing plants (progymnosperms), first trees (the progymnosperm Archaeopteris), and first (wingless) insects. Strophomenid and atrypid brachiopods, rugose and tabulate corals, and crinoids are all abundant in the oceans. Goniatite ammonoids are plentiful, while squid-like coleoids arise. Trilobites and armoured agnaths decline, while jawed fishes (placoderms, lobe-finned and ray-finned fish, and early sharks) rule the seas. First amphibians still aquatic. "Old Red Continent" of Euramerica. Beginning of Acadian Orogeny for Anti-Atlas Mountains of North Africa, and Appalachian Mountains of North America, also the Antler, Variscan, and Tuhua Orogeny in New Zealand. 372.2 ± 1.6*
Frasnian 382.7 ± 1.6*
Middle Givetian 387.7 ± 0.8*
Eifelian 393.3 ± 1.2*
Early Emsian 407.6 ± 2.6*
Pragian 410.8 ± 2.8*
Lochkovian 419.2 ± 3.2*
Silurian Pridoli First vascular plants (the rhyniophytes and their relatives), first millipedes and arthropleurids on land. First jawed fishes, as well as many armoured jawless fish, populate the seas. Sea-scorpions reach large size. Tabulate and rugose corals, brachiopods (Pentamerida, Rhynchonellida, etc.), and crinoids all abundant. Trilobites and mollusks diverse; graptolites not as varied. Beginning of Caledonian Orogeny for hills in England, Ireland, Wales, Scotland, and the Scandinavian Mountains. Also continued into Devonian period as the Acadian Orogeny, above. Taconic Orogeny tapers off. Lachlan Orogeny on Australian continent tapers off. 423 ± 2.3*
Ludlow Ludfordian 425.6 ± 0.9*
Gorstian 427.4 ± 0.5*
Wenlock Homerian 430.5 ± 0.7*
Sheinwoodian 433.4 ± 0.8*
Llandovery Telychian 438.5 ± 1.1*
Aeronian 440.8 ± 1.2*
Rhuddanian 443.8 ± 1.5*
Ordovician Late Hirnantian Invertebrates diversify into many new types (e.g., long straight-shelled cephalopods). Early corals, articulate brachiopods (Orthida, Strophomenida, etc.), bivalves, nautiloids, trilobites, ostracods, bryozoa, many types of echinoderms (crinoids, cystoids, starfish, etc.), branched graptolites, and other taxa all common. Conodonts (early planktonic vertebrates) appear. First green plants and fungi on land. Ice age at end of period. 445.2 ± 1.4*
Katian 453 ± 0.7*
Sandbian 458.4 ± 0.9*
Middle Darriwilian 467.3 ± 1.1*
Dapingian 470 ± 1.4*
Early Floian
(formerly Arenig)
477.7 ± 1.4*
Tremadocian 485.4 ± 1.9*
Cambrian Furongian Stage 10 Major diversification of life in the Cambrian Explosion. Numerous fossils; most modern animal phyla appear. First chordates appear, along with a number of extinct, problematic phyla. Reef-building Archaeocyatha abundant; then vanish. Trilobites, priapulid worms, sponges, inarticulate brachiopods (unhinged lampshells), and numerous other animals. Anomalocarids are giant predators, while many Ediacaran fauna die out. Prokaryotes, protists (e.g., forams), fungi and algae continue to present day. Gondwana emerges. Petermann Orogeny on the Australian continent tapers off (550–535 Ma). Ross Orogeny in Antarctica. Adelaide Geosyncline (Delamerian Orogeny), majority of orogenic activity from 514–500 Ma. Lachlan Orogeny on Australian continent, c. 540–440 Ma. Atmospheric CO2 content roughly 15 times present-day (Holocene) levels (6000 ppmv compared to today's 400 ppmv)[12][e] ~489.5
Jiangshanian ~494*
Paibian ~497*
Miaolingian Guzhangian ~500.5*
Drumian ~504.5*
Wuliuan ~509
Series 2 Stage 4 ~514
Stage 3 ~521
Terreneuvian Stage 2 ~529
Fortunian ~541 ± 1.0*
Precambrian[g] Proterozoic[h] Neoproterozoic[h] Ediacaran Good fossils of the first multi-celled animals. Ediacaran biota flourish worldwide in seas. Simple trace fossils of possible worm-like Trichophycus, etc. First sponges and trilobitomorphs. Enigmatic forms include many soft-jellied creatures shaped like bags, disks, or quilts (like Dickinsonia). Taconic Orogeny in North America. Aravalli Range orogeny in Indian Subcontinent. Beginning of Petermann Orogeny on Australian continent. Beardmore Orogeny in Antarctica, 633–620 Ma. ~635*
Cryogenian Possible "Snowball Earth" period. Fossils still rare. Rodinia landmass begins to break up. Late Ruker / Nimrod Orogeny in Antarctica tapers off. ~720[i]
Tonian Rodinia supercontinent persists. Sveconorwegian orogeny ends. Trace fossils of simple multi-celled eukaryotes. First radiation of dinoflagellate-like acritarchs. Grenville Orogeny tapers off in North America. Pan-African orogeny in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1,000 ± 150 Ma. Edmundian Orogeny (c. 920 – 850 Ma), Gascoyne Complex, Western Australia. Adelaide Geosyncline laid down on Australian continent, beginning of Adelaide Geosyncline (Delamerian Orogeny) in Australia. 1000[i]
Mesoproterozoic[h] Stenian Narrow highly metamorphic belts due to orogeny as Rodinia forms. Sveconorwegian orogeny starts. Late Ruker / Nimrod Orogeny in Antarctica possibly begins. Musgrave Orogeny (c. 1,080 Ma), Musgrave Block, Central Australia. 1200[i]
Ectasian Platform covers continue to expand. Green algae colonies in the seas. Grenville Orogeny in North America. 1400[i]
Calymmian Platform covers expand. Barramundi Orogeny, McArthur Basin, Northern Australia, and Isan Orogeny, c.1,600 Ma, Mount Isa Block, Queensland 1600[i]
Paleoproterozoic[h] Statherian First complex single-celled life: protists with nuclei. Columbia is the primordial supercontinent. Kimban Orogeny in Australian continent ends. Yapungku Orogeny on Yilgarn craton, in Western Australia. Mangaroon Orogeny, 1,680–1,620 Ma, on the Gascoyne Complex in Western Australia. Kararan Orogeny (1,650 Ma), Gawler Craton, South Australia. 1800[i]
Orosirian The atmosphere becomes oxygenic. Vredefort and Sudbury Basin asteroid impacts. Much orogeny. Penokean and Trans-Hudsonian Orogenies in North America. Early Ruker Orogeny in Antarctica, 2,000–1,700 Ma. Glenburgh Orogeny, Glenburgh Terrane, Australian continent c. 2,005–1,920 Ma. Kimban Orogeny, Gawler craton in Australian continent begins. 2050[i]
Rhyacian Bushveld Igneous Complex forms. Huronian glaciation. 2300[i]
Siderian Oxygen catastrophe: banded iron formations forms. Sleaford Orogeny on Australian continent, Gawler Craton 2,440–2,420 Ma. 2500[i]
Archean[h] Neoarchean[h] Stabilization of most modern cratons; possible mantle overturn event. Insell Orogeny, 2,650 ± 150 Ma. Abitibi greenstone belt in present-day Ontario and Quebec begins to form, stabilizes by 2,600 Ma. 2800[i]
Mesoarchean[h] First stromatolites (probably colonial cyanobacteria). Oldest macrofossils. Humboldt Orogeny in Antarctica. Blake River Megacaldera Complex begins to form in present-day Ontario and Quebec, ends by roughly 2,696 Ma. 3200[i]
Paleoarchean[h] First known oxygen-producing bacteria. Oldest definitive microfossils. Oldest cratons on Earth (such as the Canadian Shield and the Pilbara Craton) may have formed during this period.[j] Rayner Orogeny in Antarctica. 3600[i]
Eoarchean[h] Simple single-celled life (probably bacteria and archaea). Oldest probable microfossils. The first life forms and self-replicating RNA molecules evolve around 4,000 Ma, after the Late Heavy Bombardment ends on Earth. Napier Orogeny in Antarctica, 4,000 ± 200 Ma. ~4000
Hadean[h][k] Early Imbrian (Neohadean) (unofficial)[h][l] Indirect photosynthetic evidence (e.g., kerogen) of primordial life. This era overlaps the beginning of the Late Heavy Bombardment of the Inner Solar System, produced possibly by the planetary migration of Neptune into the Kuiper belt as a result of orbital resonances between Jupiter and Saturn. Oldest known rock (4,031 to 3,580 Ma).[16] 4130[17]
Nectarian (Mesohadean) (unofficial)[h][l] Possible first appearance of plate tectonics. This unit gets its name from the lunar geologic timescale when the Nectaris Basin and other greater lunar basins form by big impact events. Earliest evidence for life based on unusually high amounts of light isotopes of carbon, a common sign of life. 4280[17]
Basin Groups (Paleohadean) (unofficial)[h][l] End of the Early Bombardment Phase. Oldest known mineral (Zircon, 4,404 ± 8 Ma). Asteroids and comets bring water to Earth.[18] 4533[17]
Cryptic (Eohadean) (unofficial)[h][l] Formation of Moon (4,533 to 4,527 Ma), probably from giant impact, since the end of this era. Formation of Earth (4,570 to 4,567.17 Ma), Early Bombardment Phase begins. Formation of Sun (4,680 to 4,630 Ma) . 4600
References
  1. ^ Paleontologists often refer to faunal stages rather than geologic (geological) periods. The stage nomenclature is quite complex. For a time-ordered list of faunal stages, see.[6]
  2. ^ a b Dates are slightly uncertain with differences of a few percent between various sources being common. This is largely due to uncertainties in radiometric dating and the problem that deposits suitable for radiometric dating seldom occur exactly at the places in the geologic column where they would be most useful. The dates and errors quoted above are according to the International Commission on Stratigraphy 2015 time scale except the Hadean eon. Where errors are not quoted, errors are less than the precision of the age given.

    * indicates boundaries where a Global Boundary Stratotype Section and Point has been internationally agreed upon.
  3. ^ References to the "Post-Cambrian Supereon" are not universally accepted, and therefore must be considered unofficial.
  4. ^ Historically, the Cenozoic has been divided up into the Quaternary and Tertiary sub-eras, as well as the Neogene and Paleogene periods. The 2009 version of the ICS time chart[7] recognizes a slightly extended Quaternary as well as the Paleogene and a truncated Neogene, the Tertiary having been demoted to informal status.
  5. ^ a b c d For more information on this, see Atmosphere of Earth#Evolution of Earth's atmosphere, Carbon dioxide in the Earth's atmosphere, and Climate change. Specific graphs of reconstructed CO2 levels over the past ~550, 65, and 5 million years can be seen at File:Phanerozoic Carbon Dioxide.png, File:65 Myr Climate Change.png, File:Five Myr Climate Change.png, respectively.
  6. ^ In North America, the Carboniferous is subdivided into Mississippian and Pennsylvanian Periods.
  7. ^ The Precambrian is also known as Cryptozoic.
  8. ^ a b c d e f g h i j k l m n The Proterozoic, Archean and Hadean are often collectively referred to as the Precambrian Time or sometimes, also the Cryptozoic.
  9. ^ a b c d e f g h i j k l Defined by absolute age (Global Standard Stratigraphic Age).
  10. ^ The age of the oldest measurable craton, or continental crust, is dated to 3,600–3,800 Ma.
  11. ^ Though commonly used, the Hadean is not a formal eon[15] and no lower bound for the Archean and Eoarchean have been agreed upon. The Hadean has also sometimes been called the Priscoan or the Azoic. Sometimes, the Hadean can be found to be subdivided according to the lunar geologic timescale. These eras include the Cryptic and Basin Groups (which are subdivisions of the Pre-Nectarian era), Nectarian, and Early Imbrian units.
  12. ^ a b c d These unit names were taken from the lunar geologic timescale and refer to geologic events that did not occur on Earth. Their use for Earth geology is unofficial. Note that their start times do not dovetail perfectly with the later, terrestrially defined boundaries.

  1. ^ "International Stratigraphic Chart". International Commission on Stratigraphy. Archived from the original on 30 May 2014.
  2. ^ Cite error: The named reference ICSchronostrat was invoked but never defined (see the help page).
  3. ^ "Geologic Timescale Elements in the International Chronostratigraphic Chart". Retrieved 2014-08-03.
  4. ^ Cox, Simon J. D. "SPARQL endpoint for CGI timescale service". Archived from the original on 2014-08-06. Retrieved 2014-08-03.
  5. ^ Cox, Simon J. D.; Richard, Stephen M. (2014). "A geologic timescale ontology and service". Earth Science Informatics. 8: 5–19. doi:10.1007/s12145-014-0170-6.
  6. ^ "The Paleobiology Database". Archived from the original on 11 February 2006. Retrieved 2006-03-19.
  7. ^ "Archived copy" (PDF). Archived from the original (PDF) on 29 December 2009. Retrieved 23 December 2009.
  8. ^ Bartoli, G; Sarnthein, M; Weinelt, M; Erlenkeuser, H; Garbe-Schönberg, D; Lea, D.W (2005). "Final closure of Panama and the onset of northern hemisphere glaciation". Earth and Planetary Science Letters. 237 (1–2): 33–44. Bibcode:2005E&PSL.237...33B. doi:10.1016/j.epsl.2005.06.020.
  9. ^ Tyson, Peter (October 2009). "NOVA, Aliens from Earth: Who's who in human evolution". PBS. Retrieved 2009-10-08.
  10. ^ Tyson, Peter (October 2009). "NOVA, Aliens from Earth: Who's who in human evolution". PBS. Retrieved 2009-10-08.
  11. ^ https://digitalcommons.bryant.edu/cgi/viewcontent.cgi?article=1010&context=honors_science
  12. ^ a b c d Royer, Dana L. (2006). "CO2-forced climate thresholds during the Phanerozoic" (PDF). Geochimica et Cosmochimica Acta. 70 (23): 5665–75. Bibcode:2006GeCoA..70.5665R. doi:10.1016/j.gca.2005.11.031.
  13. ^ "Here's What the Last Common Ancestor of Apes and Humans Looked Like".
  14. ^ Deconto, Robert M.; Pollard, David (2003). "Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2". Nature. 421 (6920): 245–249. Bibcode:2003Natur.421..245D. doi:10.1038/nature01290. PMID 12529638.
  15. ^ Ogg, J.G.; Ogg, G.; Gradstein, F.M. (2016). A Concise Geologic Time Scale: 2016. Elsevier. p. 20. ISBN 978-0-444-63771-0.
  16. ^ Bowring, Samuel A.; Williams, Ian S. (1999). "Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology. 134 (1): 3. Bibcode:1999CoMP..134....3B. doi:10.1007/s004100050465. The oldest rock on Earth is the Acasta Gneiss, and it dates to 4.03 Ga, located in the Northwest Territories of Canada.
  17. ^ a b c Cite error: The named reference goldblatt2010 was invoked but never defined (see the help page).
  18. ^ "Geology.wisc.edu" (PDF).

Topics

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database

Purge server cache

Retrieved from "https://en.wikipedia.org/w/index.php?title=Portal:Geological_history_of_Earth&oldid=868807034"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Portal:Geological_history_of_Earth
This page is based on the copyrighted Wikipedia article "Portal:Geological history of Earth"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA