Portal:Algebra
this was created by a mathematician called Waqas naveed
Portal maintenance status: (September 2018)

Introduction
Algebra (from Arabic "aljabr", literally meaning "reunion of broken parts") is one of the broad parts of mathematics, together with number theory, geometry and analysis. In its most general form, algebra is the study of mathematical symbols and the rules for manipulating these symbols; it is a unifying thread of almost all of mathematics. It includes everything from elementary equation solving to the study of abstractions such as groups, rings, and fields. The more basic parts of algebra are called elementary algebra; the more abstract parts are called abstract algebra or modern algebra. Elementary algebra is generally considered to be essential for any study of mathematics, science, or engineering, as well as such applications as medicine and economics. Abstract algebra is a major area in advanced mathematics, studied primarily by professional mathematicians.
Elementary algebra differs from arithmetic in the use of abstractions, such as using letters to stand for numbers that are either unknown or allowed to take on many values. For example, in $x+2=5$ the letter $x$ is unknown, but the law of inverses can be used to discover its value: $x=3$. In E = mc^{2}, the letters $E$ and $m$ are variables, and the letter $c$ is a constant, the speed of light in a vacuum. Algebra gives methods for writing formulas and solving equations that are much clearer and easier than the older method of writing everything out in words.
Selected general articles
 Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject. Read more...
A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below.
Euclidean vectors are an example of a vector space. They represent physical quantities such as forces: any two forces (of the same type) can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, vectors representing displacements in the plane or in threedimensional space also form vector spaces. Vectors in vector spaces do not necessarily have to be arrowlike objects as they appear in the mentioned examples: vectors are regarded as abstract mathematical objects with particular properties, which in some cases can be visualized as arrows. Read more... In mathematics, the tensor algebra of a vector space V, denoted T(V) or T^{•}(V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property (see below).
The tensor algebra is important because many other algebras arise as quotient algebras of T(V). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. Read more...  Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.) Read more...
 In mathematics, there are many types of algebraic structures which are studied. Abstract algebra is primarily the study of specific algebraic structures and their properties. Algebraic structures may be viewed in different ways, however the common starting point of algebra texts is that an algebraic object incorporates one or more sets with one or more binary operations or unary operations satisfying a collection of axioms.
Another branch of mathematics known as universal algebra studies algebraic structures in general. From the universal algebra viewpoint, most structures can be divided into varieties and quasivarieties depending on the axioms used. Some axiomatic formal systems that are neither varieties nor quasivarieties, called nonvarieties, are sometimes included among the algebraic structures by tradition. Read more...  The geometric algebra (GA) of a vector space is an algebra over a field, noted for its multiplication operation called the geometric product on a space of elements called multivectors, which is a superset of both the scalars $F$ and the vector space $V$. Mathematically, a geometric algebra may be defined as the Clifford algebra of a vector space with a quadratic form. Clifford's contribution was to define a new product, the geometric product, that united the Grassmann and Hamilton algebras into a single structure. Adding the dual of the Grassmann exterior product (the "meet") allows the use of the Grassmann–Cayley algebra, and a conformal version of the latter together with a conformal Clifford algebra yields a conformal geometric algebra (CGA) providing a framework for classical geometries. In practice, these and several derived operations allow a correspondence of elements, subspaces and operations of the algebra with geometric interpretations.
The scalars and vectors have their usual interpretation, and make up distinct subspaces of a GA. Bivectors provide a more natural representation of pseudovector quantities in vector algebra such as oriented area, oriented angle of rotation, torque, angular momentum, electromagnetic field and the Poynting vector. A trivector can represent an oriented volume, and so on. An element called a blade may be used to represent a subspace of $V$ and orthogonal projections onto that subspace. Rotations and reflections are represented as elements. Unlike vector algebra, a GA naturally accommodates any number of dimensions and any quadratic form such as in relativity. Read more...  In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field.
Polynomial rings occur in many parts of mathematics, and the study of their properties was among the main motivations for the development of commutative algebra and ring theory. Polynomial rings and their ideals are fundamental in algebraic geometry. Many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, are generalizations of polynomial rings. Read more...  In mathematics, Ktheory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological Ktheory. In algebra and algebraic geometry, it is referred to as algebraic Ktheory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.
Ktheory involves the construction of families of Kfunctors that map from topological spaces or schemes to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to groups in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the Ktheory approach include the Grothendieck–Riemann–Roch theorem, Bott periodicity, the AtiyahSinger index theorem, and the Adams operations. Read more...  In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring (with identity) and a multiplication (on the left and/or on the right) is defined between elements of the ring and elements of the module.
Thus, a module, like a vector space, is an additive abelian group; a product is defined between elements of the ring and elements of the module that is distributive over the addition operation of each parameter and is compatible with the ring multiplication. Read more...  In mathematics, more specifically abstract algebra and ring theory, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exists a and b in R with a·b ≠ b·a. Many authors use the term noncommutative ring to refer to rings which are not necessarily commutative, and hence include commutative rings in their definition. Noncommutative algebra is the study of results applying to rings that are not required to be commutative. Many important results in the field of noncommutative algebra area apply to commutative rings as special cases.
Although some authors do not assume that rings have a multiplicative identity, in this article we make that assumption unless stated otherwise. Read more...  In mathematics, a module is one of the fundamental algebraic structures used in abstract algebra. A module over a ring is a generalization of the notion of vector space over a field, wherein the corresponding scalars are the elements of an arbitrary given ring (with identity) and a multiplication (on the left and/or on the right) is defined between elements of the ring and elements of the module.
Thus, a module, like a vector space, is an additive abelian group; a product is defined between elements of the ring and elements of the module that is distributive over the addition operation of each parameter and is compatible with the ring multiplication. Read more...  Order theory is a branch of mathematics which investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of ordertheoretic terms can be found in the order theory glossary. Read more...
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined, and behave as the corresponding operations on rational and real numbers do.
A field is thus a fundamental algebraic structure, which is widely used in algebra, number theory and many other areas of mathematics.
The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and padic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. Read more...
In mathematics, a group is an algebraic structure consisting of a set of elements equipped with an operation that combines any two elements to form a third element and that satisfies four conditions called the group axioms, namely closure, associativity, identity and invertibility. One of the most familiar examples of a group is the set of integers together with the addition operation, but the abstract formalization of the group axioms, detached as it is from the concrete nature of any particular group and its operation, applies much more widely. It allows entities with highly diverse mathematical origins in abstract algebra and beyond to be handled in a flexible way while retaining their essential structural aspects. The ubiquity of groups in numerous areas within and outside mathematics makes them a central organizing principle of contemporary mathematics.
Groups share a fundamental kinship with the notion of symmetry. For example, a symmetry group encodes symmetry features of a geometrical object: the group consists of the set of transformations that leave the object unchanged and the operation of combining two such transformations by performing one after the other. Lie groups are the symmetry groups used in the Standard Model of particle physics; Poincaré groups, which are also Lie groups, can express the physical symmetry underlying special relativity; and point groups are used to help understand symmetry phenomena in molecular chemistry. Read more...
Category theory formalizes mathematical structure and its concepts in terms of a labeled directed graph called a category, whose nodes are called objects, and whose labelled directed edges are called arrows (or morphisms). A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. The language of category theory has been used to formalize concepts of other highlevel abstractions such as sets, rings, and groups.
Several terms used in category theory, including the term "morphism", are used differently from their uses in the rest of mathematics. In category theory, morphisms obey conditions specific to category theory itself. Read more...
The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It extends the methods of vector algebra and calculus from the twodimensional Euclidean plane and threedimensional space to spaces with any finite or infinite number of dimensions. A Hilbert space is an abstract vector space possessing the structure of an inner product that allows length and angle to be measured. Furthermore, Hilbert spaces are complete: there are enough limits in the space to allow the techniques of calculus to be used.
Hilbert spaces arise naturally and frequently in mathematics and physics, typically as infinitedimensional function spaces. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term Hilbert space for the abstract concept that underlies many of these diverse applications. The success of Hilbert space methods ushered in a very fruitful era for functional analysis. Apart from the classical Euclidean spaces, examples of Hilbert spaces include spaces of squareintegrable functions, spaces of sequences, Sobolev spaces consisting of generalized functions, and Hardy spaces of holomorphic functions. Read more...
In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras. The term abstract algebra was coined in the early 20th century to distinguish this area of study from the other parts of algebra.
Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Read more... Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields, modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to distinguish this area from what was normally referred to as algebra, the study of the rules for manipulating formulae and algebraic expressions involving unknowns and real or complex numbers, often now called elementary algebra. The distinction is rarely made in more recent writings. Read more...
In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higherdimensional analogues. The exterior product of two vectors u and v, denoted by u ∧ v, is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors. The magnitude of u ∧ v can be interpreted as the area of the parallelogram with sides u and v, which in three dimensions can also be computed using the cross product of the two vectors. Like the cross product, the exterior product is anticommutative, meaning that u ∧ v = −(v ∧ u) for all vectors u and v, but, unlike the cross product, the exterior product is associative. One way to visualize a bivector is as a family of parallelograms all lying in the same plane, having the same area, and with the same orientation—a choice of clockwise or counterclockwise.
When regarded in this manner, the exterior product of two vectors is called a 2blade. More generally, the exterior product of any number k of vectors can be defined and is sometimes called a kblade. It lives in a space known as the kth exterior power. The magnitude of the resulting kblade is the volume of the kdimensional parallelotope whose edges are the given vectors, just as the magnitude of the scalar triple product of vectors in three dimensions gives the volume of the parallelepiped generated by those vectors. Read more...
In mathematics, a matrix (plural: matrices) is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. For example, the dimensions of the matrix below are 2 × 3 (read "two by three"), because there are two rows and three columns:
:${\begin{bmatrix}1&9&13\\20&5&6\end{bmatrix}}.$
The individual items in an m × n matrix A, often denoted by a_{i,j}, where max i = m and max j = n, are called its elements or entries. Provided that they have the same size (each matrix has the same number of rows and the same number of columns as the other), two matrices can be added or subtracted element by element (see Conformable matrix). The rule for matrix multiplication, however, is that two matrices can be multiplied only when the number of columns in the first equals the number of rows in the second (i.e., the inner dimensions are the same, n for A_{m,n} × B_{n,p}). Any matrix can be multiplied elementwise by a scalar from its associated field. A major application of matrices is to represent linear transformations, that is, generalizations of linear functions such as {{{1}}}. For example, the rotation of vectors in threedimensional space is a linear transformation, which can be represented by a rotation matrix R: if v is a column vector (a matrix with only one column) describing the position of a point in space, the product Rv is a column vector describing the position of that point after a rotation. The product of two transformation matrices is a matrix that represents the composition of two transformations. Another application of matrices is in the solution of systems of linear equations. If the matrix is square, it is possible to deduce some of its properties by computing its determinant. For example, a square matrix has an inverse if and only if its determinant is not zero. Insight into the geometry of a linear transformation is obtainable (along with other information) from the matrix's eigenvalues and eigenvectors.
Applications of matrices are found in most scientific fields. In every branch of physics, including classical mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, they are used to study physical phenomena, such as the motion of rigid bodies. In computer graphics, they are used to manipulate 3D models and project them onto a 2dimensional screen. In probability theory and statistics, stochastic matrices are used to describe sets of probabilities; for instance, they are used within the PageRank algorithm that ranks the pages in a Google search. Matrix calculus generalizes classical analytical notions such as derivatives and exponentials to higher dimensions. Matrices are used in economics to describe systems of economic relationships. Read more... In mathematics, the symmetric algebra S(V) (also denoted Sym(V)) on a vector space V over a field K is the free commutative unital associative algebra over K containing V.
It corresponds to polynomials with indeterminates in V, without choosing coordinates. The dual, S(V^{∗}) corresponds to polynomials on V. Read more...
Commutative algebra is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings, rings of algebraic integers, including the ordinary integers $\mathbb {Z}$, and padic integers.
Commutative algebra is the main technical tool in the local study of schemes. Read more... This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:
 completeness properties of partial orders
 distributivity laws of order theory
 preservation properties of functions between posets.
In linear algebra, an inner product space is a vector space with an additional structure called an inner product. This additional structure associates each pair of vectors in the space with a scalar quantity known as the inner product of the vectors. Inner products allow the rigorous introduction of intuitive geometrical notions such as the length of a vector or the angle between two vectors. They also provide the means of defining orthogonality between vectors (zero inner product). Inner product spaces generalize Euclidean spaces (in which the inner product is the dot product, also known as the scalar product) to vector spaces of any (possibly infinite) dimension, and are studied in functional analysis. The first usage of the concept of a vector space with an inner product is due to Peano, in 1898.
An inner product naturally induces an associated norm, thus an inner product space is also a normed vector space. A complete space with an inner product is called a Hilbert space. An (incomplete) space with an inner product is called a preHilbert space, since its completion with respect to the norm induced by the inner product is a Hilbert space. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. Read more...
In mathematics, a ring is one of the fundamental algebraic structures used in abstract algebra. It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication. Through this generalization, theorems from arithmetic are extended to nonnumerical objects such as polynomials, series, matrices and functions.
A ring is an abelian group with a second binary operation that is associative, is distributive over the abelian group operation, and has an identity element (this last property is not required by some authors, see § Notes on the definition). By extension from the integers, the abelian group operation is called addition and the second binary operation is called multiplication. Read more... Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures.
For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study. Read more...
Elementary algebra encompasses some of the basic concepts of algebra, one of the main branches of mathematics. It is typically taught to secondary school students and builds on their understanding of arithmetic. Whereas arithmetic deals with specified numbers, algebra introduces quantities without fixed values, known as variables. This use of variables entails a use of algebraic notation and an understanding of the general rules of the operators introduced in arithmetic. Unlike abstract algebra, elementary algebra is not concerned with algebraic structures outside the realm of real and complex numbers.
The use of variables to denote quantities allows general relationships between quantities to be formally and concisely expressed, and thus enables solving a broader scope of problems. Many quantitative relationships in science and mathematics are expressed as algebraic equations. Read more...
Need help?
Do you have a question about Algebra that you can't find the answer to?
Consider asking it at the Wikipedia reference desk.
Selected images
Italian mathematician Girolamo Cardano published the solutions to the cubic and quartic equations in his 1545 book Ars magna.
The quadratic formula expresses the solution of the degree two equation ax^{2} + bx + c = 0, where a is not zero, in terms of its coefficients a, b and c.
The graph of a polynomial function of degree 3.
Categories
Topics
Areas  

Algebraic structures 

Linear algebra  
Multilinear algebra  
Topic lists  
Glossaries  
Associated Wikimedia
The following Wikimedia Foundation sister projects provide more on this subject:
Wikibooks
Books
Commons
Media
Wikinews
News
Wikiquote
Quotations
Wikisource
Texts
Wikiversity
Learning resources
Wiktionary
Definitions
Wikidata
Database
 What are portals?
 List of portals