From Wikipedia, the free encyclopedia
  (Redirected from O-Methylphenethylamine)
Jump to navigation Jump to search
Preferred IUPAC name
Other names
  • 55755-16-3 ☑Y
3D model (JSmol)
  • Interactive image
  • ChEMBL451372 ☑Y
  • 1554538 ☑Y
ECHA InfoCard 100.199.500
PubChem CID
  • 2063868
Molar mass 135.21 g·mol−1
Appearance Clear colorless liquid at room temp[1]
Density 0.96 g/cm3[1]
Boiling point 97 °C (207 °F; 370 K) / 5 mmHg (270.7984 °C / 760 mmHg) Experimental[2]
Main hazards Corrosive; causes burns
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

2-Methylphenethylamine (2MPEA) is an organic compound with the chemical formula of C9H13N. 2MPEA is a human trace amine associated receptor 1 (TAAR1) agonist,[3] a property which it shares with its monomethylated phenethylamine isomers, such as amphetamine (α-methylphenethylamine), β-methylphenethylamine, and N-methylphenethylamine (a trace amine).[3]

Very little data, even on toxicity, is available about its effects on humans other than that it activates the human TAAR1 receptor.


  1. ^ a b "2-Methylphenethylamine". Chemical Book. Retrieved 27 May 2014.
  2. ^ "2-(2-Methylphenyl)ethanamine". Chemspider. Retrieved 27 May 2014.
  3. ^ a b Wainscott DB, Little SP, Yin T, Tu Y, Rocco VP, He JX, Nelson DL (January 2007). "Pharmacologic characterization of the cloned human trace amine-associated receptor1 (TAAR1) and evidence for species differences with the rat TAAR1". The Journal of Pharmacology and Experimental Therapeutics. 320 (1): 475–85. doi:10.1124/jpet.106.112532. PMID 17038507. Several series of substituted phenylethylamines were investigated for activity at the human TAAR1 (Table 2). A surprising finding was the potency of phenylethylamines with substituents at the phenyl C2 position relative to their respective C4-substituted congeners. In each case, except for the hydroxyl substituent, the C2-substituted compound had 8- to 27-fold higher potency than the C4-substituted compound. The C3-substituted compound in each homologous series was typically 2- to 5-fold less potent than the 2-substituted compound, except for the hydroxyl substituent. The most potent of the 2-substituted phenylethylamines was 2-chloro-β-PEA, followed by 2-fluoro-β-PEA, 2-bromo-β-PEA, 2-methoxy-β-PEA, 2-methyl-β-PEA, and then 2-hydroxy-β-PEA.
    The effect of β-carbon substitution on the phenylethylamine side chain was also investigated (Table 3). A β-methyl substituent was well tolerated compared with β-PEA. In fact, S-(–)-β-methyl-β-PEA was as potent as β-PEA at human TAAR1. β-Hydroxyl substitution was, however, not tolerated compared with β-PEA. In both cases of β-substitution, enantiomeric selectivity was demonstrated.
    In contrast to a methyl substitution on the β-carbon, an α-methyl substitution reduced potency by ∼10-fold for d-amphetamine and 16-fold for l-amphetamine relative to β-PEA (Table 4). N-Methyl substitution was fairly well tolerated; however, N,N-dimethyl substitution was not.

Retrieved from "https://en.wikipedia.org/w/index.php?title=2-Methylphenethylamine&oldid=740073192"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/O-Methylphenethylamine
This page is based on the copyrighted Wikipedia article "2-Methylphenethylamine"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA