Kiyoshi Oka

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Kiyoshi Oka
Kiyoshi Oka.jpg
Kiyoshi Oka
Born (1901-04-19)April 19, 1901
Died March 1, 1978(1978-03-01) (aged 76)
Nationality Japanese
Alma mater Kyoto Imperial University
Known for Oka coherence theorem
Awards Asahi Prize (1953)
Japan Academy Prize (1951)
Order of Culture (1960)
Scientific career
Fields Mathematician
Institutions Kyoto Imperial University
Hiroshima University
Hokkaido University
Nara Women's University
Kyoto Sangyo University

Kiyoshi Oka (岡 潔, Oka Kiyoshi, April 19, 1901 – March 1, 1978) was a Japanese mathematician who did fundamental work in the theory of several complex variables. He was born in Osaka. He went to Kyoto Imperial University in 1919, turning to mathematics in 1923 and graduating in 1924.

He was in Paris for three years from 1929, returning to Hiroshima University. He published solutions to the first and second Cousin problems, and work on domains of holomorphy, in the period 1936–1940. These were later taken up by Henri Cartan and his school, playing a basic role in the development of sheaf theory. Oka continued to work in the field, and proved Oka's coherence theorem in 1950. Oka's lemma is also named after him.

He was professor at Nara Women's University from 1949 to retirement at 1964. He received many honours in Japan.



    • Oka, Kiyoshi (1961). Sur les fonctions analytiques de plusieurs variables (in French). Tokyo, Japan: Iwanami Shoten. p. 234. - Includes bibliographical references.
    • Oka, Kiyoshi (1983). Sur les fonctions analytiques de plusieurs variables (in French) (Nouv. ed. augmentee. ed.). Tokyo, Japan: Iwanami. p. 246.
    • Oka, Kiyoshi (1984). Reinhold Remmert (ed.). Kiyoshi Oka Collected Papers. Translated by Raghavan Narasimhan. Commentary: Henri Cartan. Springer-Verlag. p. 223. ISBN 0-387-13240-6.

Published papers

  1. Oka, Kiyoshi (1936). "Domaines convexes par rapport aux fonctions rationnelles". Journal of Science of the Hiroshima University. 6: 245–255. doi:10.32917/hmj/1558749869. PDF TeX
  2. Oka, Kiyoshi (1937). "Domaines d'holomorphie". Journal of Science of the Hiroshima University. 7: 115–130. doi:10.32917/hmj/1558576819. PDF TeX
  3. Oka, Kiyoshi (1939). "Deuxième problème de Cousin". Journal of Science of the Hiroshima University. 9: 7–19. doi:10.32917/hmj/1558490525. PDF TeX
  4. Oka, Kiyoshi (1941). "Domaines d'holomorphie et domaines rationnellement convexes". Japanese Journal of Mathematics. 17: 517–521. doi:10.4099/jjm1924.17.0_517. PDF TeX
  5. Oka, Kiyoshi (1941). "L'intégrale de Cauchy". Japanese Journal of Mathematics. 17: 523–531. PDF TeX
  6. Oka, Kiyoshi (1942). "Domaines pseudoconvexes". Tôhoku Mathematical Journal. 49: 15–52. PDF TeX
  7. Oka, Kiyoshi (1950). "Sur quelques notions arithmétiques". Bulletin de la Société Mathématique de France. 78: 1–27. doi:10.24033/bsmf.1408. PDF TeX
  8. Oka, Kiyoshi (1951). "Sur les Fonctions Analytiques de Plusieurs Variables, VIII--Lemme Fondamental". Journal of the Mathematical Society of Japan. 3: 204–214, pp. 259–278. doi:10.2969/jmsj/00310204. PDF TeX
  9. Oka, Kiyoshi (1953). "Domaines finis sans point critique intérieur". Japanese Journal of Mathematics. 27: 97–155. doi:10.4099/jjm1924.23.0_97. PDF TeX
  10. Oka, Kiyoshi (1962). "Une mode nouvelle engendrant les domaines pseudoconvexes". Japanese Journal of Mathematics. 32: 1–12. doi:10.4099/jjm1924.32.0_1. PDF TeX
  11. Oka, Kiyoshi (1934). "Note sur les familles de fonctions analytiques multiformes etc". Journal of Science of the Hiroshima University. Ser.A 4: 93–98. doi:10.32917/hmj/1558749763. PDF TeX
  12. Oka, Kiyoshi (1941). "Sur les domaines pseudoconvexes". Proc. Imp. Acad. Tokyo. 17 (1): 7–10. doi:10.3792/pia/1195578912. PDF TeX
  13. Oka, Kiyoshi (1949). "Note sur les fonctions analytiques de plusieurs variables". Kodai Math. Sem. Rep. Nos.5-6 (5–6): 15–18. doi:10.2996/kmj/1138833536. PDF TeX

External links

Retrieved from ""
This content was retrieved from Wikipedia :
This page is based on the copyrighted Wikipedia article "Kiyoshi Oka"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA