Irreducible element

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In abstract algebra, a non-zero non-unit element in an integral domain is said to be irreducible if it is not a product of two non-units.

Relationship with prime elements

Irreducible elements should not be confused with prime elements. (A non-zero non-unit element in a commutative ring is called prime if, whenever for some and in then or In an integral domain, every prime element is irreducible,[1][2] but the converse is not true in general. The converse is true for unique factorization domains[2] (or, more generally, GCD domains.)

Moreover, while an ideal generated by a prime element is a prime ideal, it is not true in general that an ideal generated by an irreducible element is an irreducible ideal. However, if is a GCD domain, and is an irreducible element of , then as noted above is prime and so the ideal generated by is a prime ideal of .[3]

Example

In the quadratic integer ring it can be shown using norm arguments that the number 3 is irreducible. However, it is not a prime element in this ring since, for example,

but 3 does not divide either of the two factors.[4]

See also

References

  1. ^ Consider a prime element of and suppose Then or Say then we have Because is an integral domain we have So is a unit and is irreducible.
  2. ^ a b Sharpe (1987) p.54
  3. ^ "Archived copy". Archived from the original on 2010-06-20. Retrieved 2009-03-18. 
  4. ^ William W. Adams and Larry Joel Goldstein (1976), Introduction to Number Theory, p. 250, Prentice-Hall, Inc., ISBN 0-13-491282-9
Retrieved from "https://en.wikipedia.org/w/index.php?title=Irreducible_element&oldid=835578823"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Irreducible_element
This page is based on the copyrighted Wikipedia article "Irreducible element"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA