Hydrogen deuteride

From Wikipedia, the free encyclopedia
Hydrogen deuteride
Skeletal formula of hydrogen deuteride
IUPAC name
Hydrogen deuteride
Systematic IUPAC name
(2H)Dihydrogen[citation needed]
  • 13983-20-5 YesY
3D model (JSmol)
  • Interactive image
  • CHEBI:29237 YesY
  • 146609 YesY
ECHA InfoCard 100.034.325
EC Number 237-773-0
PubChem CID
  • 167583
UN number 1049
Molar mass 3.02204 g mol−1
Melting point −259 °C (−434.2 °F; 14.1 K)
Boiling point −253 °C (−423.4 °F; 20.1 K)
Extremely Flammable F+
R-phrases (outdated) R12
S-phrases (outdated) S16, S33, S36, S38
NFPA 704
Flammability code 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g., propane Health code 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g., sodium chloride Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
571 °C (1,060 °F; 844 K)
Related compounds
Related hydrogens


Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Hydrogen deuteride is a diatomic molecule substance or compound of the two isotopes of hydrogen: the majority isotope 1H protium and 2H deuterium. Its proper molecular formula is H2H but for simplification it is usually written as HD.

Natural abundance

Hydrogen deuteride is a minor component of naturally occurring molecular hydrogen. In particular, hydrogen deuteride is one of the minor but noticeable components of the atmospheres of all the giant planets, with abundances from about 30 ppm to about 200 ppm. HD has also been found in supernova remnants,[1] and other sources.[citation needed]

Occurrence of HD vs. H2 in giant planets' atmospheres
Planet HD H2[citation needed]
Jupiter ~0.003% 89.8% ±2.0%
Uranus ~0.007% 83.0% ±3.0%
Neptune ~0.019% 80.0% ±3.2%
H NMR spectrum of a solution of HD (labeled with red bars) and H2 (blue bar). The 1:1:1 triplet arises from the coupling of the 1H nucleus (I = 1/2) to the 2H nucleus ( I = 1).

Radio emission spectra

HD and H2 have very similar emission spectra, but the emission frequencies differ.[2]

The frequency of the astronomically important J = 1-0 rotational transition of HD at 2.7 THz has been measured with tunable FIR radiation with an accuracy of 150 kHz.[3]


  1. ^ Neufeld, David A.; Hollenbach, David J.; Kaufman, Michael J.; Snell, Ronald L.; Melnick, Gary J.; Bergin, Edwin A.; Sonnentrucker, Paule (2007). "SpitzerSpectral Line Mapping of Supernova Remnants. I. Basic Data and Principal Component Analysis". The Astrophysical Journal. 664 (2): 890. Bibcode:2007ApJ...664..890N. arXiv:0704.2179Freely accessible. doi:10.1086/518857. 
  2. ^ Quinn, W.; Baker, J.; Latourrette, J.; Ramsey, N. (1958). "Radio-Frequency Spectra of Hydrogen Deuteride in Strong Magnetic Fields". Phys. Rev. 112 (6): 1929. Bibcode:1958PhRv..112.1929Q. doi:10.1103/PhysRev.112.1929. 
  3. ^ Evenson, K. M.; Jennings, D. A.; Brown, J. M.; Zink, L. R.; Leopold, K. R. (1988). "Frequency measurement of the J = 1-0 rotational transition of HD". Astrophysical Journal. 330: L135. Bibcode:1988ApJ...330L.135E. doi:10.1086/185221. 

Further reading

  • Spitzer observations of hydrogen deuteride
Retrieved from "https://en.wikipedia.org/w/index.php?title=Hydrogen_deuteride&oldid=773805671"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Hydrogen_deuteride
This page is based on the copyrighted Wikipedia article "Hydrogen deuteride"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA