Homotopy sphere

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In algebraic topology, a branch of mathematics, a homotopy sphere is an n-manifold that is homotopy equivalent to the n-sphere. It thus has the same homotopy groups and the same homology groups as the n-sphere, and so every homotopy sphere is necessarily a homology sphere.

The topological generalized Poincaré conjecture is that any n-dimensional homotopy sphere is homeomorphic to the n-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005.

The resolution of the smooth Poincaré conjecture in dimensions 5 and larger implies that homotopy spheres in those dimensions are precisely exotic spheres. It is still an open question (as of 2014) whether or not there are non-trivial smooth homotopy spheres in dimension 4.

References

  • A. Kosinski, Differential Manifolds. Academic Press 1993.

See also


Retrieved from "https://en.wikipedia.org/w/index.php?title=Homotopy_sphere&oldid=838704814"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Homotopy_sphere
This page is based on the copyrighted Wikipedia article "Homotopy sphere"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA