Fundamental theorem of algebra
The fundamental theorem of algebra states that every nonconstant singlevariable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with an imaginary part equal to zero.
Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed.
The theorem is also stated as follows: every nonzero, singlevariable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n complex roots. The equivalence of the two statements can be proven through the use of successive polynomial division.
In spite of its name, there is no purely algebraic proof of the theorem, since any proof must use the completeness of the reals (or some other equivalent formulation of completeness), which is not an algebraic concept. Additionally, it is not fundamental for modern algebra; its name was given at a time when the study of algebra was mainly concerned with the solutions of polynomial equations with real or complex coefficients.
Contents
History
Peter Roth, in his book Arithmetica Philosophica (published in 1608, at Nürnberg, by Johann Lantzenberger),^{[1]} wrote that a polynomial equation of degree n (with real coefficients) may have n solutions. Albert Girard, in his book L'invention nouvelle en l'Algèbre (published in 1629), asserted that a polynomial equation of degree n has n solutions, but he did not state that they had to be real numbers. Furthermore, he added that his assertion holds "unless the equation is incomplete", by which he meant that no coefficient is equal to 0. However, when he explains in detail what he means, it is clear that he actually believes that his assertion is always true; for instance, he shows that the equation x^{4} = 4x − 3, although incomplete, has four solutions (counting multiplicities): 1 (twice), −1 + i√2, and −1 − i√2.
As will be mentioned again below, it follows from the fundamental theorem of algebra that every nonconstant polynomial with real coefficients can be written as a product of polynomials with real coefficients whose degree are either 1 or 2. However, in 1702 Leibniz said that no polynomial of the type x^{4} + a^{4} (with a real and distinct from 0) can be written in such a way. Later, Nikolaus Bernoulli made the same assertion concerning the polynomial x^{4} − 4x^{3} + 2x^{2} + 4x + 4, but he got a letter from Euler in 1742^{[2]} in which he was told that his polynomial happened to be equal to
where α is the square root of 4 + 2√7. Also, Euler mentioned that
A first attempt at proving the theorem was made by d'Alembert in 1746, but his proof was incomplete. Among other problems, it assumed implicitly a theorem (now known as Puiseux's theorem) which would not be proved until more than a century later, and furthermore the proof assumed the fundamental theorem of algebra. Other attempts were made by Euler (1749), de Foncenex (1759), Lagrange (1772), and Laplace (1795). These last four attempts assumed implicitly Girard's assertion; to be more precise, the existence of solutions was assumed and all that remained to be proved was that their form was a + bi for some real numbers a and b. In modern terms, Euler, de Foncenex, Lagrange, and Laplace were assuming the existence of a splitting field of the polynomial p(z).
At the end of the 18th century, two new proofs were published which did not assume the existence of roots, but neither of which was complete. One of them, due to James Wood and mainly algebraic, was published in 1798 and it was totally ignored. Wood's proof had an algebraic gap.^{[3]} The other one was published by Gauss in 1799 and it was mainly geometric, but it had a topological gap, filled by Alexander Ostrowski in 1920, as discussed in Smale 1981 [3] (Smale writes, "...I wish to point out what an immense gap Gauss' proof contained. It is a subtle point even today that a real algebraic plane curve cannot enter a disk without leaving. In fact even though Gauss redid this proof 50 years later, the gap remained. It was not until 1920 that Gauss' proof was completed. In the reference Gauss, A. Ostrowski has a paper which does this and gives an excellent discussion of the problem as well..."). A rigorous proof was first published by Argand in 1806 (and revisited in 1813);^{[4]} it was here that, for the first time, the fundamental theorem of algebra was stated for polynomials with complex coefficients, rather than just real coefficients. Gauss produced two other proofs in 1816 and another version of his original proof in 1849.
The first textbook containing a proof of the theorem was Cauchy's Cours d'analyse de l'École Royale Polytechnique (1821). It contained Argand's proof, although Argand is not credited for it.
None of the proofs mentioned so far is constructive. It was Weierstrass who raised for the first time, in the middle of the 19th century, the problem of finding a constructive proof of the fundamental theorem of algebra. He presented his solution, that amounts in modern terms to a combination of the Durand–Kerner method with the homotopy continuation principle, in 1891. Another proof of this kind was obtained by Hellmuth Kneser in 1940 and simplified by his son Martin Kneser in 1981.
Without using countable choice, it is not possible to constructively prove the fundamental theorem of algebra for complex numbers based on the Dedekind real numbers (which are not constructively equivalent to the Cauchy real numbers without countable choice^{[5]}). However, Fred Richman proved a reformulated version of the theorem that does work.^{[6]}
Proofs
All proofs below involve some analysis, or at least the topological concept of continuity of real or complex functions. Some also use differentiable or even analytic functions. This fact has led to the remark that the Fundamental Theorem of Algebra is neither fundamental, nor a theorem of algebra.^{[citation needed]}
Some proofs of the theorem only prove that any nonconstant polynomial with real coefficients has some complex root. This is enough to establish the theorem in the general case because, given a nonconstant polynomial p(z) with complex coefficients, the polynomial
has only real coefficients and, if z is a zero of q(z), then either z or its conjugate is a root of p(z).
A large number of nonalgebraic proofs of the theorem use the fact (sometimes called "growth lemma") that an nth degree polynomial function p(z) whose dominant coefficient is 1 behaves like z^{n} when z is large enough. A more precise statement is: there is some positive real number R such that:
when z > R.
Complexanalytic proofs
Find a closed disk D of radius r centered at the origin such that p(z) > p(0) whenever z ≥ r. The minimum of p(z) on D, which must exist since D is compact, is therefore achieved at some point z_{0} in the interior of D, but not at any point of its boundary. The Maximum modulus principle (applied to 1/p(z)) implies then that p(z_{0}) = 0. In other words, z_{0} is a zero of p(z).
A variation of this proof does not require the use of the maximum modulus principle (in fact, the same argument with minor changes also gives a proof of the maximum modulus principle for holomorphic functions). If we assume by contradiction that a := p(z_{0}) ≠ 0, then, expanding p(z) in powers of z − z_{0} we can write
Here, the c_{j} are simply the coefficients of the polynomial z → p(z + z_{0}), and we let k be the index of the first coefficient following the constant term that is nonzero. But now we see that for z sufficiently close to z_{0} this has behavior asymptotically similar to the simpler polynomial , in the sense that (as is easy to check) the function is bounded by some positive constant M in some neighborhood of z_{0}. Therefore if we define and let , then for any sufficiently small positive number r (so that the bound M mentioned above holds), using the triangle inequality we see that
When r is sufficiently close to 0 this upper bound for p(z) is strictly smaller than a, in contradiction to the definition of z_{0}. (Geometrically, we have found an explicit direction θ_{0} such that if one approaches z_{0} from that direction one can obtain values p(z) smaller in absolute value than p(z_{0}).)
Another analytic proof can be obtained along this line of thought observing that, since p(z) > p(0) outside D, the minimum of p(z) on the whole complex plane is achieved at z_{0}. If p(z_{0}) > 0, then 1/p is a bounded holomorphic function in the entire complex plane since, for each complex number z, 1/p(z) ≤ 1/p(z_{0}). Applying Liouville's theorem, which states that a bounded entire function must be constant, this would imply that 1/p is constant and therefore that p is constant. This gives a contradiction, and hence p(z_{0}) = 0.
Yet another analytic proof uses the argument principle. Let R be a positive real number large enough so that every root of p(z) has absolute value smaller than R; such a number must exist because every nonconstant polynomial function of degree n has at most n zeros. For each r > R, consider the number
where c(r) is the circle centered at 0 with radius r oriented counterclockwise; then the argument principle says that this number is the number N of zeros of p(z) in the open ball centered at 0 with radius r, which, since r > R, is the total number of zeros of p(z). On the other hand, the integral of n/z along c(r) divided by 2πi is equal to n. But the difference between the two numbers is
The numerator of the rational expression being integrated has degree at most n  1 and the degree of the denominator is n + 1. Therefore, the number above tends to 0 as r → +∞. But the number is also equal to N − n and so N = n.
Still another complexanalytic proof can be given by combining linear algebra with the Cauchy theorem. To establish that every complex polynomial of degree n > 0 has a zero, it suffices to show that every complex square matrix of size n > 0 has a (complex) eigenvalue.^{[7]} The proof of the latter statement is by contradiction.
Let A be a complex square matrix of size n > 0 and let I_{n} be the unit matrix of the same size. Assume A has no eigenvalues. Consider the resolvent function
which is a meromorphic function on the complex plane with values in the vector space of matrices. The eigenvalues of A are precisely the poles of R(z). Since, by assumption, A has no eigenvalues, the function R(z) is an entire function and Cauchy theorem implies that
On the other hand, R(z) expanded as a geometric series gives:
This formula is valid outside the closed disc of radius A (the operator norm of A). Let r > A. Then
(in which only the summand k = 0 has a nonzero integral). This is a contradiction, and so A has an eigenvalue.
Finally, Rouché's theorem gives perhaps the shortest proof of the theorem.
Topological proofs
Let z_{0} ∈ C be such that the minimum of p(z) on the whole complex plane is achieved at z_{0}; it was seen at the proof which uses Liouville's theorem that such a number must exist. We can write p(z) as a polynomial in z − z_{0}: there is some natural number k and there are some complex numbers c_{k}, c_{k + 1}, ..., c_{n} such that c_{k} ≠ 0 and that
In the case that p(z_{0}) is nonzero, it follows that if a is a k^{th} root of −p(z_{0})/c_{k} and if t is positive and sufficiently small, then p(z_{0} + ta) < p(z_{0}), which is impossible, since p(z_{0}) is the minimum of p on D.
For another topological proof by contradiction, suppose that the polynomial p(z) has no roots, and consequently is never equal to 0. Think of the polynomial as a map from the complex plane into the complex plane. It maps any circle z = R into a closed loop, a curve P(R). We will consider what happens to the winding number of P(R) at the extremes when R is very large and when R=0. When R is a sufficiently large number, then the leading term z^{n} of p(z) dominates all other terms combined; in other words, z ^{n} > a_{n−1}z^{n−1} + ··· + a_{0}. When z traverses the circle once counterclockwise , then winds n times counterclockwise around the origin (0,0), and P(R) likewise. At the other extreme, with z = 0, the curve P(0) is merely the single point p(0), which must be nonzero because p(z) is never zero. Thus p(0) must be distinct from the origin (0,0), which denotes 0 in the complex plane. The winding number of P(0) around the origin (0,0) is thus 0. Now changing R continuously will deform the loop continuously. At some R the winding number must change. But that can only happen if the curve P(R) includes the origin (0,0). But then for some z on that circle z = R we have p(z) = 0, contradicting our original assumption. Therefore, p(z) has at least one zero.
Algebraic proofs
These proofs use two facts about real numbers that require only a small amount of analysis (more precisely, the intermediate value theorem):
 every polynomial with odd degree and real coefficients has some real root;
 every nonnegative real number has a square root.
The second fact, together with the quadratic formula, implies the theorem for real quadratic polynomials. In other words, algebraic proofs of the fundamental theorem actually show that if R is any realclosed field, then its extension C = R(√−1) is algebraically closed.
As mentioned above, it suffices to check the statement "every nonconstant polynomial p(z) with real coefficients has a complex root". This statement can be proved by induction on the greatest nonnegative integer k such that 2^{k} divides the degree n of p(z). Let a be the coefficient of z^{n} in p(z) and let F be a splitting field of p(z) over C; in other words, the field F contains C and there are elements z_{1}, z_{2}, ..., z_{n} in F such that
If k = 0, then n is odd, and therefore p(z) has a real root. Now, suppose that n = 2^{k}m (with m odd and k > 0) and that the theorem is already proved when the degree of the polynomial has the form 2^{k − 1}m′ with m′ odd. For a real number t, define:
Then the coefficients of q_{t}(z) are symmetric polynomials in the z_{i}'s with real coefficients. Therefore, they can be expressed as polynomials with real coefficients in the elementary symmetric polynomials, that is, in −a_{1}, a_{2}, ..., (−1)^{n}a_{n}. So q_{t}(z) has in fact real coefficients. Furthermore, the degree of q_{t}(z) is n(n − 1)/2 = 2^{k−1}m(n − 1), and m(n − 1) is an odd number. So, using the induction hypothesis, q_{t} has at least one complex root; in other words, z_{i} + z_{j} + tz_{i}z_{j} is complex for two distinct elements i and j from {1, ..., n}. Since there are more real numbers than pairs (i, j), one can find distinct real numbers t and s such that z_{i} + z_{j} + tz_{i}z_{j} and z_{i} + z_{j} + sz_{i}z_{j} are complex (for the same i and j). So, both z_{i} + z_{j} and z_{i}z_{j} are complex numbers. It is easy to check that every complex number has a complex square root, thus every complex polynomial of degree 2 has a complex root by the quadratic formula. It follows that z_{i} and z_{j} are complex numbers, since they are roots of the quadratic polynomial z^{2} − (z_{i} + z_{j})z + z_{i}z_{j}.
Joseph Shipman showed in 2007 that the assumption that odd degree polynomials have roots is stronger than necessary; any field in which polynomials of prime degree have roots is algebraically closed (so "odd" can be replaced by "odd prime" and furthermore this holds for fields of all characteristics). For axiomatization of algebraically closed fields, this is the best possible, as there are counterexamples if a single prime is excluded. However, these counterexamples rely on −1 having a square root. If we take a field where −1 has no square root, and every polynomial of degree n ∈ I has a root, where I is any fixed infinite set of odd numbers, then every polynomial f(x) of odd degree has a root (since (x^{2} + 1)^{k}f(x) has a root, where k is chosen so that deg(f) + 2k ∈ I). Mohsen Aliabadi generalized Shipman's result for any field in 2013, proving that the sufficient condition for an arbitrary field (of any characteristic) to be algebraically closed is having a root for any polynomial of prime degree.^{[8]}
Another algebraic proof of the fundamental theorem can be given using Galois theory. It suffices to show that C has no proper finite field extension.^{[9]} Let K/C be a finite extension. Since the normal closure of K over R still has a finite degree over C (or R), we may assume without loss of generality that K is a normal extension of R (hence it is a Galois extension, as every algebraic extension of a field of characteristic 0 is separable). Let G be the Galois group of this extension, and let H be a Sylow 2subgroup of G, so that the order of H is a power of 2, and the index of H in G is odd. By the fundamental theorem of Galois theory, there exists a subextension L of K/R such that Gal(K/L) = H. As [L:R] = [G:H] is odd, and there are no nonlinear irreducible real polynomials of odd degree, we must have L = R, thus [K:R] and [K:C] are powers of 2. Assuming by way of contradiction that [K:C] > 1, we conclude that the 2group Gal(K/C) contains a subgroup of index 2, so there exists a subextension M of C of degree 2. However, C has no extension of degree 2, because every quadratic complex polynomial has a complex root, as mentioned above. This shows that [K:C] = 1, and therefore K = C, which completes the proof.
Geometric proofs
There exists still another way to approach the fundamental theorem of algebra, due to J. M. Almira and A. Romero: by Riemannian geometric arguments. The main idea here is to prove that the existence of a nonconstant polynomial p(z) without zeros implies the existence of a flat Riemannian metric over the sphere S^{2}. This leads to a contradiction, since the sphere is not flat.
A Riemannian surface (M, g) is said to be flat if its Gaussian curvature, which we denote by K_{g}, is identically null. Now, Gauss–Bonnet theorem, when applied to the sphere S^{2}, claims that
 ,
which proves that the sphere is not flat.
Let us now assume that n > 0 and p(z) = a_{0} + a_{1}z + ⋅⋅⋅ + a_{n}z^{n} ≠ 0 for each complex number z. Let us define p*(z) = z^{n}p(1/z) = a_{0}z^{n} + a_{1}z^{n−1} + ⋅⋅⋅ + a_{n}. Obviously, p*(z) ≠ 0 for all z in C. Consider the polynomial f(z) = p(z)p*(z). Then f(z) ≠ 0 for each z in C. Furthermore,
 .
We can use this functional equation to prove that g, given by
for w in C, and
for w ∈ S^{2}\{0}, is a well defined Riemannian metric over the sphere S^{2} (which we identify with the extended complex plane C ∪ {∞}).
Now, a simple computation shows that
 ,
since the real part of an analytic function is harmonic. This proves that K_{g} = 0.
Corollaries
Since the fundamental theorem of algebra can be seen as the statement that the field of complex numbers is algebraically closed, it follows that any theorem concerning algebraically closed fields applies to the field of complex numbers. Here are a few more consequences of the theorem, which are either about the field of real numbers or about the relationship between the field of real numbers and the field of complex numbers:
 The field of complex numbers is the algebraic closure of the field of real numbers.
 Every polynomial in one variable z with complex coefficients is the product of a complex constant and polynomials of the form z + a with a complex.
 Every polynomial in one variable x with real coefficients can be uniquely written as the product of a constant, polynomials of the form x + a with a real, and polynomials of the form x^{2} + ax + b with a and b real and a^{2} − 4b < 0 (which is the same thing as saying that the polynomial x^{2} + ax + b has no real roots). (By the Abel–Ruffini theorem, the real numbers a and b are not necessarily expressible in terms of the coefficients of the polynomial, the basic arithmetic operations and the extraction of nth roots.) This implies that the number of nonreal complex roots is always even and remains even when counted with their multiplicity.
 Every rational function in one variable x, with real coefficients, can be written as the sum of a polynomial function with rational functions of the form a/(x − b)^{n} (where n is a natural number, and a and b are real numbers), and rational functions of the form (ax + b)/(x^{2} + cx + d)^{n} (where n is a natural number, and a, b, c, and d are real numbers such that c^{2} − 4d < 0). A corollary of this is that every rational function in one variable and real coefficients has an elementary primitive.
 Every algebraic extension of the real field is isomorphic either to the real field or to the complex field.
Bounds on the zeros of a polynomial
While the fundamental theorem of algebra states a general existence result, it is of some interest, both from the theoretical and from the practical point of view, to have information on the location of the zeros of a given polynomial. The simpler result in this direction is a bound on the modulus: all zeros ζ of a monic polynomial satisfy an inequality ζ ≤ R_{∞}, where
Notice that, as stated, this is not yet an existence result but rather an example of what is called an a priori bound: it says that if there are solutions then they lie inside the closed disk of center the origin and radius R_{∞}. However, once coupled with the fundamental theorem of algebra it says that the disk contains in fact at least one solution. More generally, a bound can be given directly in terms of any pnorm of the nvector of coefficients , that is ζ ≤ R_{p}, where R_{p} is precisely the qnorm of the 2vector , q being the conjugate exponent of p, 1/p + 1/q = 1, for any 1 ≤ p ≤ ∞. Thus, the modulus of any solution is also bounded by
for 1 < p < ∞, and in particular
(where we define a_{n} to mean 1, which is reasonable since 1 is indeed the nth coefficient of our polynomial). The case of a generic polynomial of degree n, , is of course reduced to the case of a monic, dividing all coefficients by a_{n} ≠ 0. Also, in case that 0 is not a root, i.e. a_{0} ≠ 0., bounds from below on the roots ζ follow immediately as bounds from above on , that is, the roots of . Finally, the distance from the roots ζ to any point can be estimated from below and above, seeing as zeros of the polynomial , whose coefficients are the Taylor expansion of P(z) at
Let ζ be a root of the polynomial ; in order to prove the inequality ζ ≤ R_{p} we can assume, of course, ζ > 1. Writing the equation as , and using the Hölder's inequality we find . Now, if p = 1, this is , thus . In the case 1 < p ≤ ∞, taking into account the summation formula for a geometric progression, we have
thus and simplifying, . Therefore holds, for all 1 ≤ p ≤ ∞.
References
 ^ Rare books
 ^ See section Le rôle d'Euler in C. Gilain's article Sur l'histoire du théorème fondamental de l'algèbre: théorie des équations et calcul intégral.
 ^ Concerning Wood's proof, see the article A forgotten paper on the fundamental theorem of algebra, by Frank Smithies.
 ^ O'Connor, John J.; Robertson, Edmund F., "JeanRobert Argand", MacTutor History of Mathematics archive, University of St Andrews.
 ^ For the minimum necessary to prove their equivalence, see Bridges, Schuster, and Richman; 1998; A weak countable choice principle; available from [1].
 ^ See Fred Richman; 1998; The fundamental theorem of algebra: a constructive development without choice; available from [2].
 ^ A proof of the fact that this suffices can be seen here.
 ^ M. Aliabadi, M. R. Darafsheh, On maximal and minimal linear matching property, Algebra and discrete mathematics, Volume 15 (2013). Number 2. pp. 174–178
 ^ A proof of the fact that this suffices can be seen here.
Historic sources
 Cauchy, AugustinLouis (1821), Cours d'Analyse de l'École Royale Polytechnique, 1ère partie: Analyse Algébrique, Paris: Éditions Jacques Gabay (published 1992), ISBN 2876470535 (tr. Course on Analysis of the Royal Polytechnic Academy, part 1: Algebraic Analysis)
 Euler, Leonhard (1751), "Recherches sur les racines imaginaires des équations", Histoire de l'Académie Royale des Sciences et des BellesLettres de Berlin, Berlin, 5, pp. 222–288. English translation: Euler, Leonhard (1751), "Investigations on the Imaginary Roots of Equations" (PDF), Histoire de l'Académie Royale des Sciences et des BellesLettres de Berlin, Berlin, 5, pp. 222–288
 Gauss, Carl Friedrich (1799), Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse, Helmstedt: C. G. Fleckeisen (tr. New proof of the theorem that every integral rational algebraic function of one variable can be resolved into real factors of the first or second degree).

Gauss, Carl Friedrich (1866), Carl Friedrich Gauss Werke, Band III, Königlichen Gesellschaft der Wissenschaften zu Göttingen
 Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse (1799), pp.131., p. 1, at Google Books  first proof.
 Demonstratio nova altera theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse (1815 Dec), pp.3256., p. 32, at Google Books  second proof.
 Theorematis de resolubilitate functionum algebraicarum integrarum in factores reales demonstratio tertia Supplementum commentationis praecedentis (1816 Jan), pp.5764., p. 57, at Google Books  third proof.
 Beiträge zur Theorie der algebraischen Gleichungen (1849 Juli), pp.71103., p. 71, at Google Books  fourth proof.
 Kneser, Hellmuth (1940), "Der Fundamentalsatz der Algebra und der Intuitionismus", Mathematische Zeitschrift, 46, pp. 287–302, doi:10.1007/BF01181442, ISSN 00255874 (The Fundamental Theorem of Algebra and Intuitionism).
 Kneser, Martin (1981), "Ergänzung zu einer Arbeit von Hellmuth Kneser über den Fundamentalsatz der Algebra", Mathematische Zeitschrift, 177 (2), pp. 285–287, doi:10.1007/BF01214206, ISSN 00255874 (tr. An extension of a work of Hellmuth Kneser on the Fundamental Theorem of Algebra).
 Ostrowski, Alexander (1920), "Über den ersten und vierten Gaußschen Beweis des FundamentalSatzes der Algebra", Carl Friedrich Gauss Werke Band X Abt. 2 (tr. On the first and fourth Gaussian proofs of the Fundamental Theorem of Algebra).
 Weierstraß, Karl (1891). "Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen". Sitzungsberichte der königlich preussischen Akademie der Wissenschaften zu Berlin. pp. 1085–1101. (tr. New proof of the theorem that every integral rational function of one variable can be represented as a product of linear functions of the same variable).
Recent literature
 Almira, J.M.; Romero, A. (2007), "Yet another application of the GaussBonnet Theorem for the sphere", Bulletin of the Belgian Mathematical Society, 14, pp. 341–342
 Almira, J.M.; Romero, A. (2012), "Some Riemannian geometric proofs of the Fundamental Theorem of Algebra" (PDF), Differential Geometry  Dynamical Systems, 14, pp. 1–4
 de Oliveira, O.R.B. (2011), "The Fundamental Theorem of Algebra: an elementary and direct proof", Mathematical Intelligencer, 33 (2), pp. 1–2, doi:10.1007/s0028301191992
 de Oliveira, O.R.B. (2012), "The Fundamental Theorem of Algebra: from the four basic operations", American Mathematical Monthly, 119 (9), pp. 753–758, arXiv:1110.0165 , doi:10.4169/amer.math.monthly.119.09.753
 Fine, Benjamin; Rosenberger, Gerhard (1997), The Fundamental Theorem of Algebra, Undergraduate Texts in Mathematics, Berlin: SpringerVerlag, ISBN 9780387946573, MR 1454356
 Gersten, S.M.; Stallings, John R. (1988), "On Gauss's First Proof of the Fundamental Theorem of Algebra", Proceedings of the AMS, 103 (1), pp. 331–332, doi:10.2307/2047574, ISSN 00029939, JSTOR 2047574
 Gilain, Christian (1991), "Sur l'histoire du théorème fondamental de l'algèbre: théorie des équations et calcul intégral", Archive for History of Exact Sciences, 42 (2), pp. 91–136, doi:10.1007/BF00496870, ISSN 00039519 (tr. On the history of the fundamental theorem of algebra: theory of equations and integral calculus.)
 Netto, Eugen; Le Vavasseur, Raymond (1916), "Les fonctions rationnelles §80–88: Le théorème fondamental", in Meyer, François; Molk, Jules, Encyclopédie des Sciences Mathématiques Pures et Appliquées, tome I, vol. 2, Éditions Jacques Gabay (published 1992), ISBN 2876471019 (tr. The rational functions §80–88: the fundamental theorem).
 Remmert, Reinhold (1991), "The Fundamental Theorem of Algebra", in Ebbinghaus, HeinzDieter; Hermes, Hans; Hirzebruch, Friedrich, Numbers, Graduate Texts in Mathematics 123, Berlin: SpringerVerlag, ISBN 9780387974972
 Shipman, Joseph (2007), "Improving the Fundamental Theorem of Algebra", Mathematical Intelligencer, 29 (4), pp. 9–14, doi:10.1007/BF02986170, ISSN 03436993
 Smale, Steve (1981), "The Fundamental Theorem of Algebra and Complexity Theory", Bulletin (new series) of the American Mathematical Society, 4 (1) [4]
 Smith, David Eugene (1959), A Source Book in Mathematics, Dover, ISBN 0486646904
 Smithies, Frank (2000), "A forgotten paper on the fundamental theorem of algebra", Notes & Records of the Royal Society, 54 (3), pp. 333–341, doi:10.1098/rsnr.2000.0116, ISSN 00359149
 Taylor, Paul (2 June 2007), Gauss's second proof of the fundamental theorem of algebra  English translation of Gauss's second proof.
 van der Waerden, Bartel Leendert (2003), Algebra, I (7th ed.), SpringerVerlag, ISBN 0387406247
Latin Wikisource has original text related to this article:
Gauss's first proof

External links
 Algebra, fundamental theorem of at Encyclopaedia of Mathematics
 Fundamental Theorem of Algebra — a collection of proofs
 D. J. Velleman: The Fundamental Theorem of Algebra: A Visual Approach, PDF (unpublished paper), visualisation of d'Alembert's, Gauss's and the winding number proofs
 From the Fundamental Theorem of Algebra to Astrophysics: A "Harmonious" Path
 Gauss's first proof (in Latin) at Google Books
 Gauss's first proof (in Latin) at Google Books
 Mizar system proof: http://mizar.org/version/current/html/polynom5.html#T74