Epsilon Eridani b

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Epsilon Eridani b
Epsilon Eridani b.jpg
An artist's impression of Epsilon Eridani b, depicting it as a gas giant with rings. The object near the bottom is a hypothetical moon.
Discovered by Hatzes et al.
Discovery site United States
Discovery date 7 August 2000
Doppler spectroscopy
Orbital characteristics
~3.4 AU
~2500 d
Inclination 89°±42°[1]
Semi-amplitude 11.48±0.66 m/s[1]
Star Epsilon Eridani
Physical characteristics
Mass ~1.56 MJ
Temperature ~150 K (−123 °C; −190 °F)[1]

Epsilon Eridani b, formally named Ægir,[a] is a proposed and unconfirmed extrasolar planet approximately 10 light-years away orbiting the star Epsilon Eridani, in the constellation of Eridanus (the River).


The planet and its host star are one of the planetary systems selected by the International Astronomical Union as part of their public process for giving proper names to exoplanets and their host star (where no proper name already exists).[2][3] The process involved public nomination and voting for the new names.[4] In December 2015, the IAU announced the winning names were Ægir for the planet (pronounced /ˈər/ [Latinized] or /ˈjɪər/ [an approximation of the Old Norse]) and Ran for the star.[5] James Ott, age 14, submitted the names for the IAU contest and won.[6]


The planet's existence was suspected by a Canadian team led by Bruce Campbell and Gordon Walker in the early 1990s, but their observations were not definitive enough to make a solid discovery. Its formal discovery was announced on August 7, 2000 by a team led by Artie Hatzes. The discoverers gave its mass as 1.2 ± 0.33 times that of Jupiter, with a mean distance of 3.4 AU from the star.[7] Observers, including Geoffrey Marcy, suggested that more information on the star's Doppler noise behaviour created by its large and varying magnetic field was needed before the planet could be confirmed.[8]

In 2006, the Hubble Space Telescope made Astrometric measurements and confirmed the existence of the planet.[9] These observations indicated that the planet has a mass 1.5 times that of Jupiter and shares the same plane as the outer dust disk observed around the star.[10] The derived orbit from these measurements is eccentric: either 0.25[10] or 0.7.[11]

Meanwhile, the Spitzer Space Telescope detected an asteroid belt at roughly 3 AU from the star.[12] In 2009 Brogi's team claimed that the proposed planet's eccentricity and this belt were inconsistent: the planet would pass through the asteroid belt and rapidly clear it of material.[13] The planet and the inner belt may be reconciled if that belt's material had migrated in from the outer comet belt (also known to exist).[14]

Astronomers are still collecting and analysing radial velocity data, while also trying to refine existing upper limits from direct imaging, on Epsilon Eridani b and this has led to a recently published paper, as of January 2019, claiming that the planet's orbital eccentricity is an order of magnitude smaller than early estimates, at around 0.07, and consistent with a circular orbit, very similar to Jupiter's orbital eccentricity of 0.05.[1] The updated measurements, amongst other things, also included new estimates for the mass and inclination of the planet, at 0.78 times the mass of Jupiter and an inclination of around 89 degrees.[1] However, if the planet is later determined to be orbiting at the same inclination as the debris disc, that of 34 degrees, then its mass would be greater, at 1.19 times that of Jupiter.[1]

See also


  1. ^ Due to typesetting difficulties, the press release from the IAU spelled this ⟨AEgir⟩, with a fudge for the æ ligature.


  1. ^ a b c d e f g h Mawet, Dimitri; Hirsch, Lea; et al. (2019). "Deep Exploration of ϵ Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet" (PDF). The Astronomical Journal. 157 (1): 33. arXiv:1810.03794. Bibcode:2019AJ....157...33M. doi:10.3847/1538-3881/aaef8a. ISSN 1538-3881. OCLC 7964711337.
  2. ^ "NameExoWorlds: An IAU Worldwide Contest to Name Exoplanets and their Host Stars". IAU.org. 9 July 2014. Retrieved 2017-09-25.
  3. ^ "The ExoWorlds". nameexoworlds.iau.org: IAU. Archived from the original on 2016-12-31. Retrieved 2017-09-25.
  4. ^ "NameExoWorlds". nameexoworlds.iau.org: IAU. Retrieved 2017-09-25.
  5. ^ "Final Results of NameExoWorlds Public Vote Released". International Astronomical Union. 15 December 2015. Retrieved 2017-09-25.
  6. ^ "Mountainside wins competition to name planet, star". Spokesman.com. Retrieved 2016-05-12.
  7. ^ Hatzes, Artie P.; et al. (2000). "Evidence for a Long-Period Planet Orbiting ε Eridani". The Astrophysical Journal. 544 (2): L145–L148. arXiv:astro-ph/0009423. Bibcode:2000ApJ...544L.145H. doi:10.1086/317319.
  8. ^ Marcy, Geoffrey W.; et al. (August 7–11, 2000). "Planetary Messages in the Doppler Residuals (Invited Review)". In A. Penny (ed.). Planetary Systems in the Universe, Proceedings of IAU Symposium #202. Manchester, United Kingdom. p. 20–28. Bibcode:2004IAUS..202...20M.
  9. ^ "Hubble Zeroes in on Nearest Known Exoplanet". Hubble News Desk. 2006-10-09. Retrieved 2006-10-10.
  10. ^ a b Benedict; et al. (2006). "The Extrasolar Planet ε Eridani b: Orbit and Mass". The Astronomical Journal. 132 (5): 2206–2218. arXiv:astro-ph/0610247. Bibcode:2006AJ....132.2206B. doi:10.1086/508323. Retrieved 2008-11-16.
  11. ^ Butler; et al. (2006). "Catalog of Nearby Exoplanets". The Astrophysical Journal. 646 (1): 505–522. arXiv:astro-ph/0607493. Bibcode:2006ApJ...646..505B. doi:10.1086/504701.
  12. ^ Backman, D.; et al. (2009). "Epsilon Eridani's Planetary Debris Disk: Structure and Dynamics Based on Spitzer and Caltech Submillimeter Observatory Observations". The Astrophysical Journal. 690 (2): 1522–1538. arXiv:0810.4564. Bibcode:2009ApJ...690.1522B. doi:10.1088/0004-637X/690/2/1522.
  13. ^ Brogi, M.; et al. (2009). "Dynamical stability of the inner belt around Epsilon Eridani". Astronomy and Astrophysics. 499 (2): L13–L16. Bibcode:2009A&A...499L..13B. doi:10.1051/0004-6361/200811609.
  14. ^ Martin Reidemeister; et al. (2010). "The cold origin of the warm dust around epsilon Eridani". Astronomy & Astrophysics. 527: A57. arXiv:1011.4882. Bibcode:2011A&A...527A..57R. doi:10.1051/0004-6361/201015328.

External links

Coordinates: Sky map 03h 32m 55.8442s, −09° 27′ 29.744″

Retrieved from "https://en.wikipedia.org/w/index.php?title=Epsilon_Eridani_b&oldid=950052285"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Epsilon_Eridani_b
This page is based on the copyrighted Wikipedia article "Epsilon Eridani b"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA