Dodecahedral conjecture
Jump to navigation
Jump to search
This content was retrieved from
Wikipedia : http://en.wikipedia.org/wiki/Dodecahedral_conjectureThe dodecahedral conjecture in geometry is intimately related to sphere packing.
László Fejes Tóth, a 20th-century Hungarian geometer, considered the Voronoi decomposition of any given packing of unit spheres. He conjectured in 1943 that the minimal volume of any cell in the resulting Voronoi decomposition was at least as large as the volume of a regular dodecahedron circumscribed to a unit sphere.^{[1]}
Thomas Callister Hales and Sean McLaughlin proved the conjecture in 1998,^{[2]} following the same strategy that led Hales to his proof of the Kepler conjecture. The proofs rely on extensive computations. McLaughlin was awarded the 1999 Morgan Prize for his contribution to this proof.
References
- ^ Fejes Tóth, L. (1943). "Über die dichteste Kugellagerung". Mathematische Zeitschrift. 48 (1): 676–684. doi:10.1007/BF01180035..
- ^ Hales, Thomas C.; McLaughlin, Sean (2010). "The Dodecahedral Conjecture". Journal of the American Mathematical Society. 23 (2): 299–344. arXiv:math.MG/9811079 . Bibcode:2010JAMS...23..299H. doi:10.1090/S0894-0347-09-00647-X..
This geometry-related article is a stub. You can help Wikipedia by expanding it. |
This page is based on the copyrighted Wikipedia article "Dodecahedral conjecture"; it is used under the Creative Commons
Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may
redistribute it, verbatim or modified, providing that you comply with
the terms of the CC-BY-SA