Distance-regular graph

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Graph families defined by their automorphisms
distance-transitive distance-regular strongly regular
symmetric (arc-transitive) t-transitive, t ≥ 2 skew-symmetric
(if connected)
vertex- and edge-transitive
edge-transitive and regular edge-transitive
vertex-transitive regular (if bipartite)
biregular
Cayley graph zero-symmetric asymmetric

In mathematics, a distance-regular graph is a regular graph such that for any two vertices v and w, the number of vertices at distance j from v and at distance k from w depends only upon j, k, and i = d(v, w).

Every distance-transitive graph is distance-regular. Indeed, distance-regular graphs were introduced as a combinatorial generalization of distance-transitive graphs, having the numerical regularity properties of the latter without necessarily having a large automorphism group.

Intersection arrays

It turns out that a graph of diameter is distance-regular if and only if there is an array of integers such that for all , gives the number of neighbours of at distance from and gives the number of neighbours of at distance from for any pair of vertices and at distance on . The array of integers characterizing a distance-regular graph is known as its intersection array.

Cospectral distance-regular graphs

A pair of connected distance-regular graphs are cospectral if and only if they have the same intersection array.

A distance-regular graph is disconnected if and only if it is a disjoint union of cospectral distance-regular graphs.

Properties

Suppose is a connected distance-regular graph of valency with intersection array . For all : let denote the -regular graph with adjacency matrix formed by relating pairs of vertices on at distance , and let denote the number of neighbours of at distance from for any pair of vertices and at distance on .

Graph-theoretic properties

  • for all .
  • and .

Spectral properties

  • for any eigenvalue multiplicity of , unless is a complete multipartite graph.
  • for any eigenvalue multiplicity of , unless is a cycle graph or a complete multipartite graph.
  • if is a simple eigenvalue of .
  • has distinct eigenvalues.

If is strongly regular, then and .

Examples

Some first examples of distance-regular graphs include:

Classification of distance-regular graphs

There are only finitely many distinct connected distance-regular graphs of any given valency .[1]

Similarly, there are only finitely many distinct connected distance-regular graphs with any given eigenvalue multiplicity [2] (with the exception of the complete multipartite graphs).

Cubic distance-regular graphs

The cubic distance-regular graphs have been completely classified.

The 13 distinct cubic distance-regular graphs are K4 (or tetrahedron), K3,3, the Petersen graph, the cube, the Heawood graph, the Pappus graph, the Coxeter graph, the Tutte–Coxeter graph, the dodecahedron, the Desargues graph, Tutte 12-cage, the Biggs–Smith graph, and the Foster graph.

References

  1. ^ Bang, S.; Dubickas, A.; Koolen, J. H.; Moulton, V. (2015-01-10). "There are only finitely many distance-regular graphs of fixed valency greater than two". Advances in Mathematics. 269 (Supplement C): 1–55. arXiv:0909.5253Freely accessible. doi:10.1016/j.aim.2014.09.025. 
  2. ^ Godsil, C. D. (1988-12-01). "Bounding the diameter of distance-regular graphs". Combinatorica. 8 (4): 333–343. doi:10.1007/BF02189090. ISSN 0209-9683. 

Further reading

Retrieved from "https://en.wikipedia.org/w/index.php?title=Distance-regular_graph&oldid=855106816"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Distance-regular_graph
This page is based on the copyrighted Wikipedia article "Distance-regular graph"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA