Direction vector
This article needs additional citations for verification. (January 2017) (Learn how and when to remove this template message)

In mathematics, a direction vector that describes a line segment D is any vector
where and are two distinct points on the line D. If v is a direction vector for D, so is kv for any nonzero scalar k; and these are in fact all of the direction vectors for the line D. Under some definitions, the direction vector is required to be a unit vector, in which case each line has exactly two direction vectors, which are negatives of each other (equal in magnitude, opposite in direction).
A direction vector indicates a directional quantity, such as Radiance.
Contents
Direction vector for a line in R^{2}
Any line in twodimensional Euclidean space can be described as the set of solutions to an equation of the form
where a, b, c are real numbers. Then one direction vector of is . Any multiple of is also a direction vector.
For example, suppose the equation of a line is . Then , , and are all direction vectors for this line.
Parametric equation for a line
In Euclidean space (any number of dimensions), given a point a and a nonzero vector v, a line is defined parametrically by (a+tv), where the parameter t varies between ∞ and +∞. This line has v as a direction vector.
See also
External links
 Weisstein, Eric W. "Direction vector". MathWorld.
 Glossary, Nipissing University
 Coordinate Systems, Points, Lines and Planes