Dini continuity
Jump to navigation
Jump to search
This content was retrieved from
Wikipedia : http://en.wikipedia.org/wiki/Dini_continuityIn mathematical analysis, Dini continuity is a refinement of continuity. Every Dini continuous function is continuous. Every Lipschitz continuous function is Dini continuous.
Definition
Let be a compact subset of a metric space (such as ), and let be a function from into itself. The modulus of continuity of is
The function is called Dini-continuous if
An equivalent condition is that, for any ,
where is the diameter of .
See also
- Dini test — a condition similar to local Dini continuity implies convergence of a Fourier transform.
References
- Stenflo, Örjan (2001). "A note on a theorem of Karlin". Statistics & Probability Letters. 54 (2): 183–187. doi:10.1016/S0167-7152(01)00045-1.
This page is based on the copyrighted Wikipedia article "Dini continuity"; it is used under the Creative Commons
Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may
redistribute it, verbatim or modified, providing that you comply with
the terms of the CC-BY-SA