Diagonal functor

From Wikipedia, the free encyclopedia

In category theory, a branch of mathematics, the diagonal functor is given by , which maps objects as well as morphisms. This functor can be employed to give a succinct alternate description of the product of objects within the category : a product is a universal arrow from to . The arrow comprises the projection maps.

More generally, in any functor category (here should be thought of as a small index category), for each object in , there is a constant functor with fixed object : . The diagonal functor assigns to each object of the functor , and to each morphism in the obvious natural transformation in (given by ). In the case that is a discrete category with two objects, the diagonal functor is recovered.

Diagonal functors provide a way to define limits and colimits of functors. The limit of any functor is a universal arrow and a colimit is a universal arrow . If every functor from to has a limit (which will be the case if is complete), then the operation of taking limits is itself a functor from to . The limit functor is the right-adjoint of the diagonal functor. Similarly, the colimit functor (which exists if the category is cocomplete) is the left-adjoint of the diagonal functor. For example, the diagonal functor described above is the left-adjoint of the binary product functor and the right-adjoint of the binary coproduct functor.


  • Mac Lane, Saunders; Moerdijk, Ieke (1992). Sheaves in geometry and logic a first introduction to topos theory. New York: Springer-Verlag. pp. 20–23. ISBN 9780387977102. 
Retrieved from "https://en.wikipedia.org/w/index.php?title=Diagonal_functor&oldid=753859331"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Diagonal_functor
This page is based on the copyrighted Wikipedia article "Diagonal functor"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA