Degrees of freedom
Jump to navigation
Jump to search
This content was retrieved from
Wikipedia : http://en.wikipedia.org/wiki/Degrees_of_freedomIn many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation.
In mathematics, this notion is formalized as the dimension of a manifold or an algebraic variety. When degrees of freedom is used instead of dimension, this usually means that the manifold or variety that models the system is only implicitly defined. See:
- Degrees of freedom (mechanics), number of independent motions that are allowed to the body or, in case of a mechanism made of several bodies, number of possible independent relative motions between the pieces of the mechanism
- Degrees of freedom (physics and chemistry), a term used in explaining dependence on parameters, or the dimensions of a phase space
- Degrees of freedom (statistics), the number of values in the final calculation of a statistic that are free to vary
- Degrees of freedom problem, the problem of controlling motor movement given abundant degrees of freedom
See also
Look up degrees of freedom in Wiktionary, the free dictionary. |
This science article is a stub. You can help Wikipedia by expanding it. |
This page is based on the copyrighted Wikipedia article "Degrees of freedom"; it is used under the Creative Commons
Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may
redistribute it, verbatim or modified, providing that you comply with
the terms of the CC-BY-SA