Decagonal antiprism

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Uniform Decagonal antiprism
Decagonal antiprism.png
Type Prismatic uniform polyhedron
Elements F = 22, E = 40
V = 20 (χ = 2)
Faces by sides 20{3}+2{10}
Schläfli symbol s{2,20}
Wythoff symbol | 2 2 10
Coxeter diagram CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel 0x.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 10.pngCDel node h.png
Symmetry group D10d, [2+,20], (2*10), order 40
Rotation group D10, [10,2]+, (10.2.2), order 20
References U77(h)
Dual Decagonal trapezohedron
Properties convex
Decagonal antiprism vf.png
Vertex figure

In geometry, the decagonal antiprism is the eighth in an infinite set of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps.

Antiprisms are similar to prisms except the bases are twisted relative to each other, and that the side faces are triangles, rather than quadrilaterals.

In the case of a regular 10-sided base, one usually considers the case where its copy is twisted by an angle 180°/n. Extra regularity is obtained by the line connecting the base centers being perpendicular to the base planes, making it a right antiprism. As faces, it has the two n-gonal bases and, connecting those bases, 2n isosceles triangles.

If faces are all regular, it is a semiregular polyhedron.

See also

External links

  • Weisstein, Eric W. "Antiprism". MathWorld. 
  • Decagonal Antiprism: 3-d polyhedron model
  • Virtual Reality Polyhedra The Encyclopedia of Polyhedra
    • VRML model
    • Conway Notation for Polyhedra Try: "A10"
Retrieved from ""
This content was retrieved from Wikipedia :
This page is based on the copyrighted Wikipedia article "Decagonal antiprism"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA