Common year starting on Thursday

From Wikipedia, the free encyclopedia

A common year starting on Thursday is any non-leap year (i.e. a year with 365 days) that begins on Thursday, 1 January, and ends on Thursday, 31 December. Its dominical letter hence is D. The most recent year of such kind was 2015 and the next one will be 2026 in the Gregorian calendar[1] or, likewise, 2010 and 2021 in the obsolete Julian calendar, see below for more. This common year contains the most Friday the 13ths; specifically, the months of February, March, and November. Leap years starting on Sunday share this characteristic.

Calendars

Calendar for any common year starting on Thursday,
presented as common in many English-speaking areas

01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
 
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30  
 
01 02
03 04 05 06 07 08 09
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31  
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31  
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30  
 
01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30  
 
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31  
 


ISO 8601-conformant calendar with week numbers for
any common year starting on Thursday (dominical letter D)

01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30  
 
01 02 03 04 05
06 07 08 09 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31  
 
01 02 03 04
05 06 07 08 09 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
 
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28
 
01 02 03
04 05 06 07 08 09 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
 
01 02
03 04 05 06 07 08 09
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31  
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30  
01
02 03 04 05 06 07 08
09 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31  
01 02 03 04 05 06 07
08 09 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30  
 
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30  
 
01 02 03 04 05 06
07 08 09 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31  
 

Applicable years

Gregorian Calendar

In the (currently used) Gregorian calendar, the 15 types of years repeat in a 400-year cycle (20871 weeks). Forty-four common years per cycle or exactly 11% start on a Thursday. The 28-year sub-cycle does only span across century years divisible by 400, e.g. 1600, 2000, and 2400.

Gregorian common years starting on Thursday[1]
Decade 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
16th century prior to first adoption (proleptic) 1587 1598
17th century 1609 1615 1626 1637 1643 1654 1665 1671 1682 1693 1699
18th century 1705 1711 1722 1733 1739 1750 1761 1767 1778 1789 1795
19th century 1801 1807 1818 1829 1835 1846 1857 1863 1874 1885 1891
20th century 1903 1914 1925 1931 1942 1953 1959 1970 1981 1987 1998
21st century 2009 2015 2026 2037 2043 2054 2065 2071 2082 2093 2099

Julian Calendar

In the now-obsolete Julian calendar, the 15 types of years repeat in a 28-year cycle (1461 weeks). Each leap-year dominical letter occurs exactly once and every common letter thrice.

Sequence of year types in the Julian calendar
Year 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
DL G F E DC B* A G FE D C B AG F E D CB A G F ED C B A GF E D C BA
1 Jan Mo Tu We Th Sa Su Mo Tu Th Fr Sa Su Tu We Th Fr Su Mo Tu We Fr Sa Su Mo We Th Fr Sa
31 Dec Fr We Mo Sa Th Tu Su

The final two digits of Julian years repeat after 700 years, i.e. 25 cycles. When starting to count in 2001 for instance, every 9th, 15th and 26th year of these Julian cycles is a common year that starts on a Thursday, i.e. ca. 10.71 % of all years. They are always 6 or 11 years apart.

Julian common years starting on Thursday
Decade 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
15th century 1405 1411 1422 1433 1439 1450 1461 1467 1478 1489 1495
16th century 1506 1517 1523 1534 1545 1551 1562 1573 1579 1590
17th century 1601 1607 1618 1629 1635 1646 1657 1663 1674 1685 1691
18th century 1702 1713 1719 1730 1741 1747 1758 1769 1775 1786 1797
19th century 1803 1814 1825 1831 1842 1853 1859 1870 1881 1887 1898
20th century 1909 1915 1926 1937 1943 1954 1965 1971 1982 1993 1999
21st century 2010 2021 2027 2038 2049 2055 2066 2077 2083 2094

References

  1. ^ a b Robert van Gent (2005). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. 
  2. ^ Robert H. van Gent (2005). "Mathematics of the ISO calendar". Department of Mathematics at Utrecht University. 
Retrieved from "https://en.wikipedia.org/w/index.php?title=Common_year_starting_on_Thursday&oldid=765385722"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Common_year_starting_on_Thursday
This page is based on the copyrighted Wikipedia article "Common year starting on Thursday"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA