Absolutely convex set

From Wikipedia, the free encyclopedia

A set C in a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (circled), in which case it is called a disk.

Properties

A set is absolutely convex if and only if for any points in and any numbers satisfying the sum belongs to .

Since the intersection of any collection of absolutely convex sets is absolutely convex then for any subset A of a vector space one can define its absolutely convex hull to be the intersection of all absolutely convex sets containing A.

Absolutely convex hull

The light gray area is the Absolutely convex hull of the cross.

The absolutely convex hull of the set A is defined to be

.

See also

References

  • Robertson, A.P.; W.J. Robertson (1964). Topological vector spaces. Cambridge Tracts in Mathematics. 53. Cambridge University Press. pp. 4–6. 
  • Narici, Lawrence; Beckenstein, Edward (July 26, 2010). Topological Vector Spaces, Second Edition. Pure and Applied Mathematics (Second ed.). Chapman and Hall/CRC. 
Retrieved from "https://en.wikipedia.org/w/index.php?title=Absolutely_convex_set&oldid=753235155"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Absolutely_convex_set
This page is based on the copyrighted Wikipedia article "Absolutely convex set"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA